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Executive Summary 
 

 

Spatial information and spatial technologies can bring significant value to health agencies 

through improved decision support, resource management and allocation, and clinical 

outcomes. Disease mapping is used to explain and predict patterns of diseases outcomes 

across geographical areas, identify areas of increased risk, and assist in understanding the 

causes of diseases. As such, its use in informing policy recommendations is growing, and 

diseases of national importance, such as cancer, are being increasingly mapped across small 

regions. 

 

Yet there are many potential methodological approaches for examining disease data over 

small areas, and understanding the benefits and disadvantages of any single approach when 

applied to a given situation is critical. 

 

The aims of this report are threefold. First, to provide an accessible overview of the methods 

used in analysing spatial public health data, ranging from raw (unsmoothed) estimates 

through to complex Bayesian hierarchical models. Secondly, to outline the practical 

computational implementation of these methods. Finally, by comparing the advantages and 

disadvantages of these methods, to provide general guidelines and recommendations for their 

use.  

 

Examples of the methods used in existing cancer atlases and other small-area analyses are 

also provided, as well as Bayesian approaches to incorporating multiple nested regions; 

considering the combined influence of related variables, such as remoteness and area-level 

socioeconomic disadvantage; small-area estimation from survey data; and extending the 

spatial analyses to also consider differences over time (spatio-temporal models).  

 

Key issues to consider when using spatial data include data quality, including the reliability 

of location measures, and the degree of similarity between nearby areas (spatial correlation). 

 

Although unsmoothed estimates such as crude or age-standardised rates may be useful for 

exploratory analyses, they are rarely appropriate for small-area analyses due to the small 

numbers involved, and should not be used when: 

1. The addition of one event (disease case/death), or one more person at risk, results in a 

large difference (such as 25% or more) in at least one area’s rates. 

2. The number of events (rate numerator) is less than three for at least one area. 

3. The population at risk per area is small (typically less than 500 people), and these 

numbers vary by an order of magnitude across the areas. 

 

Smoothing methods may be either direct (e.g. locally-weighted, kernel smoothing) or model-

based (e.g. Poisson kriging, Empirical Bayes or fully Bayesian). In general, direct smoothing 

methods are also more appropriate for exploratory analyses, but less useful when 

investigating contributing factors as they have more limited capacity for adjusting for 

covariates.  
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Model-based smoothing approaches have several advantages over the direct smoothing 

methods, and their use is recommended when assessing the impact of covariates is important, 

or the underlying pattern of risk needs to be understood. 

 

There is no one model that represents the ultimate approach for disease mapping. The aims of 

the analysis, data quality, and expected results (such as disparate risks between nearby areas) 

can all influence the selection of the final model. Nonetheless, Bayesian hierarchical models 

are increasingly used in disease mapping, have been shown to perform well overall, and with 

the more recent application of approximation methods are able to generate results quickly. 

 

For a cancer atlas, we generally recommend the use of Bayesian hierarchical models. The 

fully Bayesian approach enables the development of more complex, realistic models with 

reliable disease rates in low population areas, clearer summaries of spatial and temporal 

correlation, more precise and interpretable confidence intervals, and greater ability to account 

for and quantify measured sources of uncertainty than other possible approaches. The 

Bayesian approach also has excellent flexibility in handling changing inferential goals, such 

as obtaining smoothed risk maps as well as identifying motivating predictors of disease such 

as ethnicity or socioeconomic status. 
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1. Introduction 
 

“Knowing where things are, and why, is 

essential to rational decision making.” 
 

                     ~ Jack Dangermond, 

Environmental Systems Research Institute (ESRI) 

 

1.1 Background 
 

Place affects health (1). Spatial epidemiology aims to quantify and explain geographic 

variation in diseases and their relationship with environmental, demographic, behavioural, 

socioeconomic, genetic and infectious disease factors (2, 3). As such, disease mapping is an 

integral component of spatial epidemiology (3). Disease mapping can explain and predict 

patterns of diseases outcomes across geographical areas, identify areas of increased risk, and 

assist in understanding the causes of diseases (4).  

 

Data used for spatial epidemiological analyses require information on the disease of interest, 

as well as a geographic location (Table 1.1) (5). This geographic location may be available at 

either the point or area level. Point level data refers to having the exact geocoded locations 

available, while area-level, or areal, data are only available for a region. Areal data are 

considered to have a constant estimate over the entire region, but commonly this is an 

aggregate measure such as the number of counts. Areas may consist of a regular lattice, or 

they may consist of irregular shapes. 

 

Table 1.1 Examples of the types of data used in spatial epidemiological studies  

Data Description 

Health or disease      
 

Vital statistics, notifiable diseases, patient registries, and health 

surveys from various international or government agencies. 

[Location is usually based on residential address] 
 

Field epidemiology Surveyed data on disease occurrences with location coordinates 

collected via GPS. 

Spatially referenced base Digital cartographic data available from various international or 

government agencies. [Often includes contours, rivers, and built 

environment features] 

Remotely sensed      Land cover, elevation, soil type as reflected by satellite images. 

Environmental and natural resources Interpreted data on land use, water quality, air quality, climate, 

geology, etc. 

Census or demographic Sociodemographic and economic data. 

Note: Modified version of Table 2.2 in (5), page 23. GPS=Global Positioning System. 

 

The observed data represents one of three components involved in a spatial statistical analysis 

(Figure 1.1). Any one of these components may drive subsequent development of the other 

two, and often multiple circuits will occur before the process is complete (6). An existing 

map could inform data collection which then determines the appropriate statistical analysis. 
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Or a model could be developed, data collected and a map produced. This report concentrates 

on the analysis and modelling element. As areal data are commonly used by NHPA, this 

report focuses exclusively on methods for analysing area-level data. These data are also more 

readily available due to fewer data privacy restraints than point data. Another associated 

report “Communicating statistical outputs through maps” discusses the mapping component 

in detail. Cancer is a collection of diseases that are increasingly being mapped at the small-

area level, and the third associated report “Grey Literature Review: Internet Published Cancer 

Maps” focuses on online, interactive cancer maps. 

 

Figure 1.1 Components of a spatial statistical analysis 

 

 

 

 

 

 

 

 

 

Note: Modified from Figure 12.4 in (6), page 179.  

 

Many areal disease mapping methods initially arose from approaches to restoring images 

(that is, undoing image defects, such as motion blur, noise and/or camera misfocus), but there 

are important differences in public health data (7). First, areas are often irregular in shape and 

size (8), in contrast to the regular gridded lattice used in image restoration. There are 

commonly far fewer areas in public health data than pixels in an image, and these have 

varying rather than constant numbers of neighbours. Adjustment for important variables in 

the public health context is likely to influence results, whether that be population size or age, 

comorbidities or disease stage, while image restoration is primarily about the visual structure 

alone. Finally, any true boundaries in underlying risk are likely to be obscured by random 

noise in public health data, whereas images typically have clearly defined boundaries and 

multiple consecutive pixels with an identical colour (7). 

  

1.2 Definition of small area/spatial 
 

A small-area is defined in this report as an area that has a small population, and is not 

necessarily associated with their geographical size. What is a small population? This is 

determined by the disease of interest. A common disease, with a rate of 50%, could be quite 

well approximated with a population of 100. A less common disease, such as cancer, with a 

rate of 0.5%, would need a population of 10,000 to obtain a comparable number of cases. 

 

Data 

Analysis Maps 
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Debate continues over the appropriate scale and definition of an area for a spatial analysis (9). 

There are no clear rules: selecting an appropriate spatial scale depends on the objective of the 

analysis, and (to a slightly lesser extent) data availability (9, 10). Public health estimates 

commonly require population data, which is often only available for administrative 

boundaries, and it is unusual for population estimates to be disaggregated to very fine 

resolution, especially by age and sex breakdowns.   

 

Note that the terms small-area analysis and spatial analysis are used interchangeably in this 

report. 

 

 

1.3 Aims 
 

The aims of this report are threefold. First, to provide an accessible overview of methods 

used in analysing spatial public health data, ranging from raw (unsmoothed) estimates 

through to complex Bayesian hierarchical models. Secondly, to outline the practical 

computational implementation of these methods. Finally, by comparing the advantages and 

disadvantages of these methods, to provide general guidelines and recommendations for their 

use.  

 

This report is not designed to be a comprehensive review, but instead seeks to broadly 

examine the key methods and models appropriate for areal data. Cancer is a complex group 

of diseases whose outcomes are increasingly the subject of small-area analyses. Cancer is 

used throughout this report to illustrate methods used in analysing spatial variation in disease 

outcomes. 

 

 

1.4 Structure of report 
 

This report is structured as follows. Technical details are provided in Boxes throughout the 

report for those interested. Additional details are also available in the Appendices, including a 

glossary of terms, a tutorial on Bayesian disease mapping, details on computational packages 

and software available, as well as further recommended reading.  

 

In Chapter 2, methods used for analysing spatial data are presented, including unsmoothed 

estimates, direct smoothing methods as well as model-based smoothing approaches. No data 

are perfect, and this chapter outlines several statistical inference approaches to enable 

learning from these data. This encompasses examination of correlation (also known as cluster 

or hot-spot analysis), unsmoothed estimation, direct smoothing approaches such as locally-

weighted averages or kernel smoothers, model-based smoothing, and computational 

approaches. 

 

Chapter 3 then focuses on one group of diseases – cancer – and discusses the methods that 

have been applied to generate published small-area cancer estimates for screening, 

incidence/mortality, and survival data. 
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Chapter 4 presents a discussion of Bayesian approaches to spatial modelling, with four 

specific topics considered: (i) multiple nested geographies, (ii) combined remote and 

socioeconomic categories, (iii) survey data, and (iv) spatio-temporal data. 

 

Finally, recommendations for when to use smoothing methods, and the types of smoothing or 

modelling methods likely to be the most appropriate, both generally and specifically for 

cancer atlases, are presented along with concluding remarks in Chapter 5.
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2. Calculating small-area health estimates 
 

“Everything is related to everything else, but 

near things are more related than far things.” 
 

 ~ Waldo Tobler (First Law of Geography) (11) 

 

 

Spatial data has specific characteristics that must be considered. Indeed, Fischer and Wang 

(12) titled their discussion around these issues as “the tyranny of spatial data”.  

 

First, data quality is critical (12). If data are geocoded, understanding the accuracy of the 

process is important. Although different types of geocoding exist, the most pertinent in 

spatial epidemiology is the geocoding of residential addresses (13). Potential errors in 

geocoding at the street number level include a low match rate (the completeness of geocoding 

to the street number level), positional error (geocoded point is not near the ‘true’ location), 

and low concordance (assignment to the correct geographic unit) (13). Geocoding is only 

reliable if the output is of high quality and repeatable (13). Note that repeatability can be 

influenced by variations in the reference data, the matching algorithms used by the geocoding 

software, as well as the skills and experience of geocoding personnel (13). Recently, 

Australia released the Geocoded National Address File (G-NAF), which is updated quarterly, 

although the level of uptake from health agencies is unclear. 

 

 

2.1 Analysing spatial correlation 
 

Beyond data quality, there are important inferential issues for spatial data. Perhaps the most 

important of these involve spatial correlation, clearly expressed in Tobler’s first law of 

geography (11). This law posits that areas closer together are more similar than those further 

apart. Spatial correlation implies correlation among the same measure from different 

locations (14). Where spatial correlation is present, the assumptions that data are independent 

and identically distributed (the backbone of most traditional regression analyses) are violated 

(15, 16). Ignoring these spatial properties can result in false conclusions (17, 18). Any 

statistical techniques that assume data are independent are therefore not valid when spatial 

correlation is present.  

 

A large range of options for testing for spatial correlation are available, and many GIS 

packages as well as standard statistical packages include the ability to conduct several tests. 

Popular options for area-level data include Moran’s I (19), Geary’s C (20), and the Localised 

Indicators of Spatial Association (LISA) (21) (Boxes 2.1 and 2.2). Newer options that have 

been shown to perform well (22) include Tango’s Maximised Excess Events Test (MEET) 

(23) and the spatial scan statistic (24) (Boxes 2.1 and 2.2). These may assess spatial 

correlation throughout the entire study region (called global clustering, such as Moran’s I), or 

may detect localised correlation (also called local clustering, or hot-spot analysis, such as the 

LISA). 
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Box 2.1 Global measures of spatial correlation  

 

Moran’s I (19) can be defined as: 

Moran′s 𝐼 =
𝐼

∑ (𝑧𝑖 − 𝑧̅)2𝐼
𝑖=1

×
∑ ∑ 𝑤𝑖𝑗(𝑧𝑖 − 𝑧̅)(𝑧𝑗 − 𝑧̅)𝐼

𝑗=1
𝐼
𝑖=1

∑ ∑ 𝑤𝑖𝑗
𝐼
𝑗=1

𝐼
𝑖=1

 

 

where 𝑧𝑖 is the observed value at each area i=1,…I areas, 𝑧̅ is the mean value, 𝐼 is the number 

of areas and 𝑤𝑖𝑗 are the weights indicating which areas are adjacent/close together. 

 

The input observed values 𝑧𝑖 may be the original observations, or some standardisation to 

avoid scale dependence, such as the deviations from the mean (21). Standardised values are 

generally preferable. 

 

The values of Moran’s I generally span from -1 (dispersed) to +1 (clustering). Values around 

0 indicates no spatial correlation. 

 

Geary’s C (20) is similar to Moran’s I, as can be seen from the following definition using the 

same notation: 

Geary′s 𝐶 =
𝐼 − 1

∑ (𝑧𝑖 − 𝑧̅)2𝐼
𝑖=1

×
∑ ∑ 𝑤𝑖𝑗(𝑧𝑖 − 𝑧𝑗)2𝐼

𝑗=1
𝐼
𝑖=1

2 ∑ ∑ 𝑤𝑖𝑗
𝐼
𝑗=1

𝐼
𝑖=1

 

 

The values of Geary’s C typically range between 0 and 2. A value of 1 means no spatial 

correlation, <1 indicates positive spatial correlation, and >1 indicates negative spatial 

correlation (25).  Geary’s C is considered more sensitive to local spatial correlation than 

Moran’s I (5). 

 

Tango’s MEET (23) is based on the calculation of the excess events test (EET) (26), which is 

a weighted sum of the excess number of events (observed minus expected), with higher 

weights when areas are proximal, as follows:  

 

𝐸𝐸𝑇 = ∑ ∑ 𝑒
−

4𝑑𝑖𝑗
2

𝜆2 (𝑂𝑖 −
𝑝𝑖𝑂𝑇𝑂𝑇

𝑃𝑇𝑂𝑇
) (𝑂𝑗 −

𝑝𝑗𝑂𝑇𝑂𝑇

𝑃𝑇𝑂𝑇
)

𝑗𝑖

 

 

where 𝑜𝑖 and 𝑝𝑖 are the observed count and population, respectively, in each area, 𝑂𝑇𝑂𝑇 and 

𝑃𝑇𝑂𝑇 are the overall count and population, and 𝑑𝑖𝑗 represents the distance between area i and 

area j. The choice of 𝜆 can influence the outcome, with large values of 𝜆 increasing 

sensitivity to detecting large geographical clusters, while small 𝜆 increases the sensitivity to 

small clusters. 

 

Tango’s MEET overcomes this by considering multiple versions of 𝜆 up to a pre-determined 

value. This enables clustering to be detected irrespective of geographical scale. A small p-

value indicates clustering is present. 
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Box 2.2 Local measures of spatial correlation 

 

One form of the LISA (Local Indicators of Spatial Association) can be considered the local 

equivalent of Moran’s I, and expressed as: 

 

𝐼𝑖 = (𝑧𝑖 − 𝑧̅) × ∑ 𝑤𝑖𝑗(𝑧𝑖 − 𝑧̅)2
𝑛

𝑗∈𝐽𝑖

 

 

It is also possible to have a LISA version of other common global indicators, including 

Geary’s C. The LISA for each area indicates the extent of significant spatial clustering 

around that area, and the sum of LISAs for all areas is in proportion to the corresponding 

global statistic (27). 

 

Disadvantages of the LISA include multiple testing issues as a separate statistical test is 

conducted for each region (14). These regions are also small, and rates are unstable, risking 

spurious significance. Although a Bonferroni adjustment is often used to account for multiple 

tests, the correlation between neighbouring LISAs (as they share some of the same 

observations), would cause this adjustment to be very conservative (14). 

 

The spatial scan statistic (24) considers a large number of overlapping circles of assorted 

sizes and locations. Specialised software has been developed and is freely available to 

implement this method (SaTScan) (28). This method can be used for a range of data (count, 

ordinal, binomial, even multinomial and survival) and can also be adjusted for covariates (29, 

30). This method of detecting clusters is based on maximising the likelihood ratio.  

 

The spatial scan statistic is proportional to 

 

max (
𝑂𝐼𝑁

𝐸𝐼𝑁
)

𝑂𝐼𝑁

(
𝑂𝑂𝑈𝑇

𝐸𝑂𝑈𝑇
)

𝑂𝑂𝑈𝑇

 

 

where 𝑂𝐼𝑁 and 𝑂𝑂𝑈𝑇 are the observed counts inside and outside the circle, respectively, and 

𝐸𝐼𝑁 and 𝐸𝑂𝑈𝑇 are the respective expected counts inside and outside the circle (14). 

 

Although the spatial scan statistic has been reported as performing well in comparison to 

other methods (22), others have raised concerns about the large size of the clusters detected 

and difficulties in detecting cluster shapes other than circles (31). 
 

 

 

While the aim of global clustering methods is to determine if there is clustering throughout 

the region, the precise location of any clustering is not important (22). Instead, results may 

provide a general indication of overall patterns, such as whether any correlation is positive 

(similar values are clustered together), or negative (dissimilar values are together) (Figure 

2.1). 
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In contrast, local clustering methods seek to detect the location of statistically significant 

spatial clusters and outliers in disease risk (32). This is achieved by comparing the value at 

one location with values at nearby locations, up to a specified threshold distance (32). 

 

Figure 2.1 Spatial correlation patterns 

 
      

     Positive correlation                           None         Negative correlation 

        Clustered              Random          Dispersed 

        Moran’s I ~ 1         Moran’s I = 0    Moran’s I ~ -1 

       Geary’s C ~ 0         Geary’s C = 1    Geary’s C ~ 2 

 
Notes: Modified from Figure 3.6 in Lai et al. (33).  

 

 

2.2 Defining the neighbourhood  
 

One way of accounting for spatial correlation in the data is by defining a neighbourhood as 

part of the model. A neighbourhood is composed of surrounding areas that are considered to 

exert influence on the observations of an area (12).  

 

The definition of an area-based neighbour may be based on spatial adjacency, such as those 

sharing a boundary, or instead may be based on the distance between the centroids (14). Here, 

if the distance between two area centroids is below a certain threshold distance, they are 

considered to be neighbours. Ways to measure the distance between the centroids include 

straight-line distances (the shortest distance between the two coordinates assuming they are 

on a flat surface), great circle distances (determining the length of the arc of the earth’s 

surface between the two points), or using a Geographic Information System (GIS) to 

calculate travel distances or times (12).  

 

Note that when there is great variation in the size of the areas, determining a suitable 

threshold distance value is difficult. Even just allowing for the largest areas to have at least 

one neighbour may result in far too many neighbours for smaller areas (34). Options for 

overcoming this problem include assigning a fixed number of neighbours for each area (k-

nearest neighbours) (Box 2.3).   
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Box 2.3 Weighting mechanism examples (12, 35, 36) 

 

Distance-based weights 

𝑤𝑖𝑗 = {
1 if 𝑑𝑖𝑗 < 𝛿  

0 otherwise
 

 

where 𝑑𝑖𝑗 is the distance between the centroids of regions 𝑖 and 𝑗, and 𝛿 is a given critical 

value.  

 

Distance-based simultaneously weighted by population 
 

𝑤𝑖𝑗 = {
𝑒𝑖𝑒𝑗/𝑑𝑖𝑗 if 𝑑𝑖𝑗 < 𝛿  

0 otherwise            
 

 

where 𝑒𝑖 is the standardised population for an area and 𝑒𝑗 is the standardised population for 

its neighbour in area 𝑗. These can be standardised against the mean and standard deviation. 

 

Distance-based simultaneously weighted by distance 
 

 E.g. Based on the inverse distance function 
 

𝑤𝑖𝑗 = {
𝑑𝑖𝑗

−𝛾 if 𝑑𝑖𝑗 < 𝛿  

0 otherwise       
 

 

where the parameter 𝛾 specifies the declining rate of the weight, and can be set a priori or 

estimated. Common choices for 𝛾 are the values of one or two. 

 

k-nearest neighbours (Note that 𝑤𝑖𝑗 might not be equal to 𝑤𝑗𝑖) 
 

𝑤𝑖𝑗 = {
1 if centroid of 𝑗 is one of the 𝑘 nearest to centroid 𝑖  
0 otherwise                                                                                

 

 

Adjacency-based neighbours 
 

𝑤𝑖𝑗 = {
1 if regions 𝑖 and 𝑗 share a boundary 
0 otherwise                                               

 

 

Adjacency-based weighted by the fraction of a shared border  
 

𝑤𝑖𝑗 = {

𝑙𝑖𝑗

𝑙𝑖
 if regions 𝑖 and 𝑗 share a boundary 

0 otherwise                                               

 

 

where 𝑙𝑖𝑗 is the length of shared common boundary between regions 𝑖 and 𝑗, and 𝑙𝑖 is the 

perimeter of region 𝑖. 
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Part of assigning neighbours involves applying a measure of weighting to indicate the extent 

to which the information from an area’s neighbours impacts on the observed estimate for that 

area.  A weight of zero indicates no relationship, while a weight above zero indicates that 

areas 𝑖 and 𝑗 are considered to be neighbours, and some influence is expected. The weights 

(𝑤𝑖𝑗) are placed into a matrix with dimensions of the number of areas. When calculating the 

similarity with nearby regions, the diagonal (𝑤𝑖𝑖) is generally set to 0 as an area is not 

considered to be a neighbour of itself. (This differs from situations when the proportion is 

averaged over areas (see Section 2.4). Here, data in the area should be included, so 𝑤𝑖𝑖 = 1 

(37).) The greater the weight, the more resistant they are to their neighbour’s influence (35).  

 

The derivation of this weight can be based on a range of options (Box 2.3).  The weighting 

can also be modified according to distance (the weight decreases for more distant 

neighbours), or based on the population size of neighbours (larger populations receive greater 

weight). Often if little is known about the assumed spatial pattern, a binary weighting is 

assigned with 1 for neighbours and 0 otherwise (35) This is often then standardised by 

dividing by the number of neighbours so that the rows sum to 1. When areas are irregularly 

shaped, this standardised weight matrix is generally not symmetric (14). As each neighbour 

receives the same proportional weight, interpretation is simple as it becomes a weighted 

average of neighbouring values (12). 

 

The same spatial arrangement can lead to many different neighbourhood definitions. Key 

considerations when selecting an approach to assigning neighbours include whether areas are 

regular or irregular shapes and sizes and how localised spatial dependencies are. Given the 

influence a neighbourhood structure can exert on a spatial analysis, checking the 

appropriateness of this choice and its impact on the conclusions is important (12, 38).  

 

 

2.3 Unsmoothed estimates 
 

 

The simplest of all techniques for generating values for small-areas are to calculate and map 

unsmoothed, or ‘raw’ estimates. 

 

Counts may be displayed as dots on a map, randomly allocated within the area supplied. 

Although mapping the counts can be useful and appropriate if the aim is to inform service 

provision, often understanding the disease risk is of interest, and this requires some form of 

adjustment for population size and structure. Commonly this is achieved by using rates as a  

reflection of risk (14). 

 

There are several types of rates commonly calculated. Crude rates adjust only for population 

size, but not structure (Box 2.4). Proportions and percentages are other commonly used 

measures for a crude rate. The assumption is that the risk remains constant over all age and 

sex categories (37), but most diseases disproportionately affect specific age groups (14). 

When comparing crude rates between areas, observed differences for a disease that varies 

with age may reflect differences in the age distribution alone.  
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Box 2.4 Crude rates 

 

A crude rate for the 𝑖th area (i=1,…I) can be calculated as: 

 

CR𝑖 =
𝑂𝑖

𝑃𝑖
 

  

where 𝑂𝑖 are the observed counts in area 𝑖 and 𝑃𝑖 are the number of people residing in area 𝑖. 

Commonly small crude rates are multiplied by a constant and expressed as per constant (e.g. 

per 1,000). 
 

 

An alternative approach, which also adjusts for population structure, is to calculate age-

standardised rates by considering the counts of disease and the expected counts using some 

standard population (39). These may be either directly or indirectly standardised rates. It is 

also possible to further adjust for specific area-level variables, such as socioeconomic status.  

 
 

Box 2.5 Directly age-standardised rates 

 

Directly standardised rates represent the rate these areas would have if their age distribution 

matched that of the standard population (14).  

 

Excluding sex for simplicity, and assuming the 𝑚 age groups (m=1,…M, e.g. M=18 five-year 

age-groups (0-4, 5-9,…, 85+)), the directly age-standardised rate (DSR) for the 𝑖th area 

(i=1,…I) can be calculated as (40): 

 

DSR𝑖 = ∑ 𝜋𝑚

𝑀

𝑚=1

𝑂𝑖𝑚

𝑃𝑖𝑚
 

  

where 𝜋𝑚 is the proportion of people in age group 𝑚 from the standard population, 𝑂𝑖𝑚 are 

the observed disease counts (number of cases for incidence, number of deaths for mortality) 

in area 𝑖 and age group 𝑚, and 𝑃𝑖𝑚 are the number of residents in area 𝑖 and age group 𝑚. 
 

 

 

Direct standardisation focuses on estimating the number of cases/deaths that would be 

observed in the standard population if the observed age-specific rates of disease applied (41). 

This is achieved by weighting the age and sex-specific rates for each small area so they 

correspond to the age distribution of a single standard population (Box 2.5). This method 

enables comparison between areas, but does require age (and sex) specific counts and 

populations for each area, which may not be available, or may be very unstable (5, 14). Also, 

the standard population is arbitrarily defined, and estimates may differ substantially between 

different standard population definitions (42).  
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In contrast, indirect standardisation focuses on estimating the number of cases/deaths that 

would be expected if the study population contracted/died from the disease at the same rate as 

the standard population (41). Indirectly standardised rates thus multiply the stratified 

population of each small area by the known stratified disease rates of some reference 

population (Box 2.6). This process produces a standardised morbidity (if using incidence 

data) or mortality (if using death data) ratio (SMR). This estimator is very popular, and only 

requires the population at risk in each age-sex group and area, as well as the total counts in 

each area. It also has a lower standard error (33), and is useful for small areas with unstable 

rates (5). However, in contrast to directly standardised rates, weights differ for each area 

considered, and bias can potentially result if the age-distributions differ between the areas 

being compared (43).  Therefore indirectly standardised rates tend to not be directly 

comparable between different geographical regions (14). 

 
 

Box 2.6 The Standardised Morbidity/Mortality Ratio (SMR) 

 

Indirect standardisation reflects whether the number of cases in an area are higher or lower 

than expected, given the population size and structure for that area.  

 

The definition of an SMR for the 𝑖th area (i=1,…I) is: 

 

SMR𝑖 =
𝑂𝑖

𝐸𝑖
 

  

where 𝑂𝑖 are the observed counts in area 𝑖 and 𝐸𝑖 are the expected counts in area 𝑖, applying 

the overall (reference) disease rates to the age-specific population structure 𝑃 of area 𝑖 and 

summing across all 𝑚 age groups (with a maximum of M age groups), and excluding sex, as 

follows: 

 

𝐸𝑖 = ∑
𝑂ref𝑚

𝑃ref𝑚

× 𝑃𝑖𝑚

𝑀

𝑚=1

 

 

Where 𝑂ref𝑚
represents the observed disease counts (either cases or deaths) in the reference 

population in age group 𝑚, and 𝑃ref𝑚
is the reference population in age group 𝑚. 

 

The corresponding standard error for the 𝑖th area is: 
√𝑂𝑖

𝐸𝑖
 

 

 

These simple estimates are commonly displayed using a choropleth map. The 

colouring/shading of areas in a choropleth map uses a discrete scale based on the values of 

the estimate. Any kind of choropleth map implicitly smooths the display of results, and the 

fewer the number of categories, the greater this visual smoothing (44). However, the 

assumption of spatial independence inherent in choropleth mapping could be misleading, and 

caution in using with ‘raw’ (unsmoothed) estimates is advised (45).  
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Further, as area size diminishes, the use and interpretation of these unsmoothed estimates 

become increasingly difficult due to the greater variance (Box 2.7) associated with them (46). 

These estimates can also be prone to substantial fluctuation from year to year without there 

necessarily being a change in the underlying rate for a specific area. Other concerns include 

that when an area has no counts, the estimate is zero, regardless of denominator size (47). As 

such, these ‘unsmoothed’ methods are perhaps most useful for preliminary investigation to 

guide further analyses, rather than being an end in themselves.  

 
 

Box 2.7 Variance and covariance 

 

Variance can be defined as: 

 

var(𝑋) = 𝜎2 =
1

𝑛
∑(𝑋𝑖 − �̅�)2

𝑛

𝑖=1

 

 

In other words, variance can be visualised as lines describing how far away each observation 

is from the mean on a scatter plot. 

 

Covariance is a measure of how much two variables change together, so can be defined as: 

 

cov(𝑋, 𝑌) =
1

𝑛
∑(𝑋𝑖 − �̅�)

𝑛

𝑖=1

(𝑌𝑖 − �̅�) 

 

Covariance can be visualised as rectangles describing how far away pairs of observations are 

from the mean on a scatter plot. 
 

 

 

2.4 Direct smoothing 
 

The objective of disease mapping is to produce an accurate estimate of the underlying rate in 

different areas, with noise removed (48). This ‘noise’ is simply additional variation in the 

data, and a major source is often unmeasured variables that affect the outcome (49). 

Smoothing methods aim to remove or minimise this noise by incorporating neighbouring 

information in a flexible way (40). When information from geographical neighbours are 

included, the information for the region is artificially inflated. This provides greater stability 

for the specific area as well as between areas. 

 

 

2.4.1 Locally-weighted average/median 
 

A straightforward smoothing method is averaging the values associated with neighbouring 

areas. First, the neighbours and appropriate weights must be selected (see Section 2.2). 
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Different forms of smoothing result from different weighting choices (14). If binary weights 

of zero and one are used, then any difference in the precision of the rates is ignored. 

Weighting neighbours by their population is one way to incorporate the precision (14). 

 

Although the measures weighted are usually based on the mean of either the crude rate or the 

SMR, the resulting sensitivity to extreme outliers has led to extensions based on the median 

instead (37). To allow for differences in precision, the median crude rate could be weighted 

by the population, while the median SMR could be weighted by the inverse standard error 

(37). Here the original values are sorted then matched with both the weight (e.g. population 

size) and a cumulative sum of the weights (50). Whichever weight has a cumulative sum of 

more than half the total cumulative sum is used (50).  

 

Despite the simplicity and range of options available for these locally-weighted methods, 

there are some key disadvantages. Firstly, the number and regularity of locations may 

influence the efficiency of the algorithm (5). There is also a risk that because neighbouring 

areas are “forced” to have some numerical association with each other, this method may 

induce spatial structure, even when the data are completely random (51).  

 

 

2.4.2 Kernel smoothers 

 

A general, non-parametric approach to smoothing rates while differentially weighting 

neighbours is to use a two-dimensional kernel function (37). A kernel function decreases with 

increasing distance (distance decay function), and the rate and range of decay is modified by 

the functional form of the kernel, as well as the threshold beyond which the kernel is set to 

zero (bandwidth) (37). 

 

Although more commonly applied in geostatistical (point) data, kernel smoothers can be 

applied to areal data at a specified moving window size (25). A range of kernel smoothers 

exist, but one of the most commonly used is the Nadaraya-Watson kernel estimator (Box 2.8) 

(52, 53). Although this is a weighted average of the neighbourhood observations, the weights 

are controlled by the kernel function, so all observations are not treated equally (49). 

 

Depending on the application, disadvantages of kernel smoothing can include estimates 

resulting in different totals across areas than in the original data (45). Boundary effects cause 

problems for kernel smoothers (49), while the use of cross-validation has been shown to 

induce over-smoothing (47). A comparison of several smoothing methods concluded that 

kernel smoothers performed poorly when spatial correlation was present, and suggested only 

using them for exploratory data analysis (47).  
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Box 2.8 The Nadaraya-Watson kernel estimator (47, 49, 52, 53) 

 

This kernel smoother is simply a weighted average, so if applied to an indirectly standardised 

ratio such as an SMR: 

 

𝜃𝑖 = ∑ 𝑤𝑖𝑗SMR𝑗

𝑗≠𝑖

 

 

The weights are functions of neighbouring values: 

 

𝑤𝑖𝑗 =
𝐾((SMR𝑖 − SMR𝑗)/ℎ)

∑ 𝐾((SMR𝑖 − SMR𝑗)/ℎ)𝑗
 

 

 

The function 𝐾(∙) is the kernel function: a smooth probability density function symmetric 

around 0 and nondecreasing on [
−1

   2
, 0] and ℎ is the bandwidth and selected by minimising 

some goodness-of-fit measure, such as cross-validation (where data are partitioned into 

testing and validation sub-samples to see how it generalises to an independent dataset). 
 

 

 

2.5 Model-based smoothing 
 

Two standard paradigms for statistical models are: 

1. The sampling model, where population characteristics are estimated from a sample or 

subset of the population, and 

2. The measurement error model, where the focus is on estimating an underlying pattern, 

but the data are measured with error. This model is also applicable when complete 

data are observed (54). 

 

Although these differ, in practice both approaches can be combined (54). Most models 

discussed in this section are measurement error models. Section 4.3 focuses on sampling 

models in the context of survey data. 

 

 

2.5.1 Foundational approaches 

 

In public health applications, the most widely used regression models are the generalised 

linear models (GLMs) and the generalised linear mixed models (GLMMs) (Box 2.9), 

particularly using the Poisson distribution for count data (14).  

 

The Poisson model is appropriate when there are low disease counts and comparatively large 

populations in each small area (55). The counts are assumed to follow a Poisson distribution 
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which defines the mean and variance. The mean is dependent on two components: 1) the 

expected count, generally obtained through indirect standardisation, and 2) the excess risk, 

which is the SMR, also often referred to as the relative risk in this context (Box 2.10). 

 
 

Box 2.9 GLMs and GLMMs 

 

A generalised linear model (GLM) involves:  

◦ A data vector 𝑂 = (𝑂1, 𝑂2, … , 𝑂𝐼) 

◦ Predictors 𝑋 and coefficients 𝛽, to give the linear predictor 𝑋𝛽 

◦ A link function g, that links the linear predictor to a nonlinear transformation of the 

expected response (e.g. logarithm) 

◦ An assumed data distribution (e.g. Poisson) 

◦ Potentially other parameters involved in the predictors, link function and data 

distribution, such as variances, overdispersions and cutpoints (54). 

 

A generalised linear mixed model (GLMM) involves the same components as the GLM, with 

the addition of random effects. The ‘mixed’ in the name thus refers to the model containing 

both fixed and random effect terms. Defining whether a term is fixed or random is seldom 

straightforward, but perhaps the cleanest approach is that fixed effects are constant if they are 

identical for all groups, while random effects are allowed to vary between groups (56). 
 

 

The binomial distribution is sometimes preferred for small areas due to the Poisson 

distribution having some probability of obtaining more counts than persons at risk in each 

area (14). However, this is extremely unlikely for rare diseases, where the practical difference 

between Poisson and binomial distributions is negligible (14). The Poisson distribution also 

constrains the mean to be equal to the variance, but as small areas often have a variance 

greater than the mean (termed over-dispersion), some prefer to use the negative binomial 

distribution instead. However, the use of a fully Bayesian formulation where a prior 

distribution is placed on the SMR/relative risk can accommodate some over-dispersion (55). 

 
 

Box 2.10 The Poisson model 

 

The disease counts 𝑂 in each of i areas (i=1,…I) is assumed to have a mean dependent on the 

expected count 𝐸𝑖 and the SMR/relative risk 𝜃𝑖 as follows: 
 

𝑂𝑖~Poisson(𝐸𝑖𝜃𝑖) 

 

The main interest is normally in modelling 𝜽𝒊 in the ith area. A logarithmic link is often 

assumed (which ensures estimates are positive) to a linear predictor model (Box 2.9), as 

follows: 

log 𝜃𝑖 = 𝜂𝑖 = 𝑋𝑖𝛽 
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2.5.2 Poisson Kriging 

 

Kriging was originally developed to estimate attribute values from a limited set of sampled 

data over a continuous spatial region (57). The weights used in kriging incorporate distance 

measures, as well as spatial correlation (58). Although this increases the complexity, it also 

increases the flexibility of the method and the reliability of predictions (59).  Areal disease 

mapping often doesn’t require the interpolative ability of kriging, but a specific variant of 

kriging known as Poisson kriging has been developed and is becoming increasingly used for 

disease maps (57, 60). 

 
 

Box 2.11 The Semivariogram (5) 

 

The semivariogram displays the semivariance, which is a measure of the level of spatial 

correlation, against distance or lag (Figure 2.2). 

 

Figure 2.2 Semivariogram components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Modified from the Figure in Explanation Box 6.1 in (5), page 107. 

 

The distance at which the model first levels out is called the range. Areas separated by 

distances greater than this are not considered to influence each other, whereas areas separated 

by distances within the range are spatially correlated. 
 

 



18 

 

There are several variants of Poisson kriging, but as we are exploring methods appropriate for 

areal data, our focus is on area-to-area (ATA) and area-to-point (ATP) Poisson kriging. 

Goovaerts (61) extended the work of Kyriakidis (45) to introduce these. While ATA kriging 

can be used when both the observations and the desired predictions are over areas, ATP 

kriging predicts point values from areal data (45). An alternative is to simply collapse the 

data on the centroids, but this is not considered appropriate when the shape and/or size of 

areas are irregular (62). 

 

In both ATA and ATP Poisson kriging, the risk over an area is estimated as a weighted linear 

combination of the rate observed for that area and neighbouring areas (61). Areas with 

smaller populations receive less weight. These weights are solved from a system of linear 

equations, but requires either the point-support covariance of the risk, or the equivalent point-

support semivariogram (Box 2.11), to be modelled. This point-support model is where the 

spatial correlation is included. 

 

Developing a semivariogram structure that accounts for irregularly shaped areas and varying 

distributions is relatively complex, and an iterative procedure is recommended (62). 

Approaches range from solving a set of integral equations (63), to iteratively re-weighted 

generalised least squares methods (64), to simulated grids within the regions of interest (62). 

 

While kriging is a useful filter of noise, and produces uncertainty estimates, it is not designed 

to estimate the risk within each area (51). Nonetheless, a comparison against the popular 

Bayesian Besag, York & Mollié (BYM)  model (see Box 2.14) found that Poisson kriging 

gave better discrimination between areas with high and low risks, and more precise and 

accurate probability intervals (65). Poisson kriging was also found to out-perform simple 

population-weighted averages and empirical Bayesian smoothers (see Section 2.5.3) (51).  

 

 

2.5.3 Empirical Bayes 

 

Bayesian methods differ from other statistical approaches as they consider both the data and 

the parameters to be random variables (37). Inference under a Bayesian approach requires 

specific items (Box 2.12), with the most controversial element being the selection of the prior 

distribution.  

 

Some practical suggestions when selecting a prior distribution include graphing it, to ensure 

the shape is plausible, as well as potentially calculating the effective sample size of the prior 

(Box 2.13) (66). Choosing particular families of prior distributions (called ‘conjugate priors’) 

may assist in solving the posterior distribution without resorting to complicated integrations. 

For further details on the Bayesian approach, refer to Appendix B.  

 

Empirical Bayes (EB) methods use the data to estimate the unknown information on the prior 

and conditional distributions (67, 68). Spatial disease patterns were initially explored using 

EB methods by Clayton and Kaldor (69), Cressie and Read (70) and Cressie (46). 
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Box 2.12 Bayesian inference 

 

To make inference about the unknown parameter 𝜃 from the data 𝑂 requires the following 

(71):  

     1.  A model 𝑓(𝑂|𝜃); the likelihood 

     2.  A distribution for 𝜃. This is called a prior distribution as it is determined before seeing 

the data. 

 

The combination of the likelihood and prior distribution(s) by Bayes’ rule gives the posterior 

distribution:  

Posterior ∝ Prior × Likelihood 
 

from which subsequent model-based inferences are drawn. 
 

 

Empirical Bayes predictors have attractive statistical properties, provided the model is 

appropriate, including being the best linear unbiased predictor (BLUP) (46). The associated 

uncertainty for each estimate is also available. Ironically, the greatest criticism of EB models 

are against the uncertainty measures. Since they do not account for the additional variability 

in estimating the parameter values, the resulting variance tends to be too small (68, 72-74). 

Although methods are available to adjust the variance estimates (68, 75), fully Bayesian 

methods have many of the same desirable properties as an EB estimate, while adequately 

representing the distribution of underlying rates (72).  

 
 

Box 2.13 Calculating the effective sample size of the conjugate prior distribution (66) 

 

The conjugate distribution to the Poisson is the gamma. Say the gamma distribution is 

expressed as gamma(𝑟, 𝑣) where 𝑟 =
𝑚2

𝑠2  and 𝑣 =
𝑚

𝑠2 where 𝑚 is the prior mean and 𝑠 is the 

prior standard deviation, and that 𝑂1, … 𝑂𝑛 is a random sample of observed counts from a 

Poisson distribution, Poisson(𝜇), so that the expected value of 𝑂 has mean 𝜇 and variance 
𝜇

𝑛
. 

 

To check the amount of prior information entering the model, the equivalent sample size can 

be calculated by solving the following for 𝑛𝐸𝑆𝑆: 

 
𝜇

𝑛𝐸𝑆𝑆
=

𝑟

𝑣2
 

 

If the mean is set equal to the prior mean, i.e. 𝜇 =
𝑟

𝑣
 then under the gamma(𝑟, 𝑣) prior 𝑛𝐸𝑆𝑆 =

𝑣. This value represents the size of a random sample from the Poisson(𝜇) that is equivalent 

to your prior knowledge of 𝜇. If 𝑛𝐸𝑆𝑆 seems too large, increase the prior standard deviation 𝑠 

and recalculate. 
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2.5.4 Fully Bayesian 

 

In contrast to Empirical Bayes where some unknown parameters are assigned a point 

estimate, a fully Bayesian model results when prior distributions are placed on all unknown 

parameters. Beyond simple models with few parameters, this results in a hierarchical model 

structure, where each layer defines a relationship between the observed data and/or unknown 

parameters.  This general class of model is commonly referred to as a Bayesian hierarchical 

model. 

 

There are several advantages to using Bayesian hierarchical models, including the ability to 

structure very complicated models from a succession of relatively simple components (76), 

good performance and ease of implementation (72, 77-79). They are also a natural approach 

to model spatially misaligned data, as occurs when the exposure and response are measured 

at different levels of aggregation (80).  

 

The fully Bayesian approach enables complex, realistic models to be developed with reliable 

disease rates in low population areas, clear summaries of spatial and temporal correlation, 

precise and easily interpretable confidence intervals, and more comprehensive accounting of 

sources of uncertainty (77). The Bayesian approach also has excellent flexibility in handling 

changing inferential goals, such as obtaining smoothed risk maps as well as identifying 

motivating predictors of disease such as ethnicity or socioeconomic status (77).  

 

 

2.5.4.1 Incidence/mortality data 

 

The most popular Bayesian hierarchical model for disease mapping is the BYM model (Box 

2.14) (81), which further developed the model of Clayton and Kaldor (69).  The key feature 

of this model are the two random effects: one which is spatially structured, so smooths locally 

(towards the values of nearby areas), and one which is unstructured, so smooths globally, 

towards the overall average (82, 83).  

 
 

Box 2.14 The BYM model 

 

The BYM model can be expressed as follows: 

 

𝑂𝑖~Poisson(𝐸𝑖𝜃𝑖) 

 

log(𝜃𝑖) = 𝛼 + 𝑢𝑖 + 𝑣𝑖 
 

where 𝑂𝑖 is the number of disease events in the ith region, 𝐸𝑖 is the expected number of cases, 

𝜃𝑖  is the standardised incidence ratio and 𝛼 is the intercept. The model incorporates extra-

Poisson variability by including two spatial random effects: 𝑣𝑖 allows for inter-area 

heterogeneity, while 𝑢𝑖 is structured and represents the spatial component (84).  
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Commonly, the prior distributions placed on the structured spatial component is a 

Conditional Autoregressive (CAR) distribution. The CAR prior is characterised by an 

adjacency matrix, which defines the geographical neighbours of each area.  The intrinsic 

Gaussian CAR prior (81) assumes this matrix is binary, where immediately adjacent 

neighbours are given the value 1, and all other pairs of areas are given the value 0.  In this 

case, the estimated random effects for each area are smoothed towards the average of the 

random effects for the neighbours.  The resulting simple functions of the neighbouring values 

and number of neighbours, 𝑛𝑖, equates to the following conditional distribution: 

 

𝑢𝑖|𝐮−𝐢~Normal (�̅�𝑖,
𝜔𝑢

2

𝑛𝑖
) where �̅�𝑖 is the average of the neighboring regions of area i and the 

variance term 𝜔𝑢
2 represents a conditional variance (so is deliberately not portrayed as 𝜎𝑢

2) 

      𝐮−𝐢 = (𝑢1, … 𝑢𝑖−1, 𝑢𝑖+1, … , 𝑢𝐼) 

 

This can be expressed jointly as 𝐮~Normal𝐼 (𝟎,
1

𝜔𝑢
2 (𝐃 − 𝐖)−1) 

where 𝐃 is a diagonal matrix with 𝐷𝑖𝑖 = 𝑛𝑖, 𝐖 is a spatial weight matrix of dimension 𝑁 × 𝑁 

with diagonal elements 𝑤𝑖𝑖 = 0 and off-diagonal elements 𝑤𝑖𝑗 = 1 if regions 𝑖 and 𝑗 share a 

boundary, and 0 otherwise.  

 

The intrinsic CAR distribution is restricted to specifying prior distributions, as the pairwise 

difference joint specification results in an improper joint distribution. The computational ease 

is a key advantage of the intrinsic CAR formulation (85, 86). 

 

The inter-area heterogeneity effect commonly has a vague normal prior distribution: 
 

         𝑣𝑖~Normal(0, 𝜎𝑣
2) or expressed jointly as 𝐯~Normal𝐼(0, 𝜎𝑣

2𝐈) where 𝐈 is the identity 

matrix (diagonals are set to 1, 0 otherwise). 

 

Under the Bayesian hierarchical formulation, the variance components for both the CAR and 

the normal distributions will also receive prior distributions (termed ‘hyperpriors’).  

 

Common choices include a vague gamma distribution on the inverse variance, or a uniform 

distribution on the standard deviation, e.g. 
 

       𝜎𝑢~Uniform(0,10) 

       𝜎𝑣~Uniform(0,10) 
 

 

The BYM model has been shown to produce robust estimates, but results may be sensitive to 

the choice of priors, particularly the choice of hyperpriors (47, 65, 87). The intrinsic Gaussian 

CAR prior results in a spatially smooth risk surface, which has the advantage of using 

information from multiple areas to estimate the random effects, but is not ideal if the aim is to 

identify clusters of high-risk areas (87).  This is because a cluster of high risk areas may have 

low-risk neighbours, and therefore the estimated risk for these areas becomes less distinct 

when geographical smoothing is used (88). Identifiability is also a concern, as the one 

residual component is split into two independent, additive components (89). Very sparse data, 
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as would be seen for smaller geographical areas such as Statistical Area 2 (SA2) or SA1, may 

cause difficulties when applying these models, particularly if there are also none or very few 

neighbours, such as on a coastline or an island (90). Finally, the spatial correlation may 

inflate the variance of the 𝛽 components when covariates are included (91, 92).  

 

Alternative approaches have suggested modifications to try to overcome the issues with 

identifiability. The Leroux CAR prior (93) (Box 2.15) outperformed the BYM model in a 

comparison of methods (94). MacNab’s alternative convolution prior (95) (Box 2.15) also 

overcomes identifiability issues, at the cost of greater model complexity (89). 

 
 

Box 2.15 Alternative priors to the BYM  

 

The Leroux prior (93) 

Instead of the 𝑣𝑖 + 𝑢𝑖 components in the BYM model, the Leroux prior has the one term 

modelled by the multivariate normal prior, as follows: 

 

𝐛 ~ Normal𝐼(𝟎, Σ𝑏) 

 

1

Σ𝑏
=

1

𝜎𝑏
2 (𝜆(𝐃𝑢 − 𝐖) + (1 − 𝜆)𝐈𝐼) 

 

Where 𝝀 is between 0 and 1, and referred to as the spatial correlation parameter, as it reflects 

the proportion of excess Poisson variation explained by spatial dependencies, D is a diagonal 

matrix with 𝑫𝒊𝒊 = 𝒏𝒊, W is the spatial weight matrix and I is the identity matrix (see Box 2.14 

for further details) 

 

MacNab’s alternative convolution prior (95) 

This prior facilitates identifiability of the spatial and unstructured random effects. Using the 

same notation as above, this can be expressed as: 

 

𝐛 ~ Normal𝐼(𝟎, Σ𝑏) 

 

Σ𝑏 =
𝜆𝜎𝑏

2

(𝐃 − 𝐖)
+ (1 − 𝜆)𝜎𝑏

2𝐈𝐼 

 

 

 

Allowing discontinuous risks between areas 

 

Other approaches have focused on allowing discrete changes between areas. Some of the 

current approaches deal with this issue by defining the adjacency matrix such that the 

elements are random quantities to be estimated (96). In this way, boundaries between clusters 

of areas can be identified when the adjacency matrix elements for neighbouring pairs are 

estimated to be near zero.  There are two main problems with this methodology.  First, using 
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random quantities in an adjacency matrix of size 𝐼 × 𝐼 (where I represents the number of 

areas) means an additional 𝐼2 parameters need to be estimated, which is usually more 

parameters than can be estimated reliably.  And secondly, there is no constraint on boundary 

segments to enclose an area or cluster of areas (88). 

 
 

Box 2.16 Lawson and Clark’s model 

 

Here, an intrinsic CAR prior and a difference prior act as a ‘mixture of priors’ (97). 
 

Instead of the 𝑣𝑖 + 𝑢𝑖 components in the BYM model, this model has the following terms: 
 

𝑣𝑖 +  𝑝𝑖𝑢𝑖 + (1 − 𝑝𝑖)𝑤𝑖 
 

where 𝒑𝒊 is interpreted as the strength of support for spatial smoothing in the ith area, 𝒖𝒊 and 

𝒗𝒊 represent the spatially structured and inter-area heterogeneity terms, respectively, as in 

Box 2.14, and 𝑤𝑖 represents the jump component. Note that the above equation defaults to the 

BYM model if  𝑝𝑖 = 1, but as 𝑝𝑖 approaches 0, the jump component is preferred.  

 

The prior distributions on 𝒖𝒊 and 𝒗𝒊 are as previously defined (Box 2.14), while the prior on 

𝑤𝑖 is intended to measure spatial rates of change in risk. Although a range of options is 

possible, the suggested approach was: 

𝐰 ∝
1

√𝜆
exp (−

1

𝜆
∑ |𝑤𝑖 − 𝑤𝑗|

𝑖~𝑗

) 

 

where 𝜆 acts as a constraining term, and 𝑗 represents areas that are neighbours. 
 

As there are only two mixing probabilities, a standard Beta distribution is used,  

𝑝𝑖~beta(𝛼, 𝛼) 
 

For higher dimensions a Dirichlet prior could be used. 
 

 

New methodology to address these problems was proposed by Anderson et al. (98). This 

approach consists of two stages.  In the first stage, a set of candidate cluster configurations 

are identified by using what is called a ‘modified hierarchical agglomerative clustering 

algorithm’.  Initially, each area is considered to be a cluster, and clusters are combined 

together sequentially based on how similar they are according to some metric applied to the 

spatial data until all areas are combined into one cluster, resulting in a total of 𝐼 cluster 

configurations.  The term ‘modified’ is used because the usual clustering algorithm does not 

necessarily produce spatially contiguous clusters, but this is enforced by only allowing 

clusters to be combined if the clusters share a common border.  The spatial data used in this 

stage should not be the study data used in the second stage of the model, but should be a 

similar dataset, such as data on the same disease for a previous time period, data on a similar 

disease, or even covariate information.  Each clustering configuration has a corresponding 

adjacency matrix, with each matrix resulting in a different degree of spatial smoothing.  In 
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the second stage, a separate Bayesian hierarchical model is fit to the data for each of the 𝐼 

cluster configurations.  These 𝐼 models can be compared using model goodness-of-fit 

criterion (88, 98). 

 

Anderson et al. (88) refine this methodology by fitting a single model in the second stage 

which is capable of estimating the cluster structure and disease risk simultaneously.  This is 

achieved by specifying the prior for the random effects as a mixture of 𝐼 CAR priors, where 

each mixture component has a different adjacency matrix with a corresponding prior weight.  

The most appropriate number of clusters can then be selected using the posterior mode or 

median.  This updated methodology improves computational efficiency because little time is 

spent estimating the model parameters for those mixture components which correspond to an 

untenable cluster configuration. However, note that these methods have only been applied to 

diseases such as chronic obstructive pulmonary disease (COPD), which tends to be more 

common than diseases such as cancer.  

 

Alternative approaches include Lawson and Clark’s (99) weighted sum of spatial priors 

which has no single global smoothing, so the underlying risk is free to either be smoothed or 

to ‘jump’ between areas (Box 2.16). In contrast, several of the semi-parametric mixture 

models force the risk surface to be discontinuous, including marginal mixture models and 

spatial partition models (99, 100). Although some of the semi-parametric mixture models 

allow for a smooth underlying risk, Green and Richardson’s hidden Markov model (101) 

smoothed the data more than the BYM model when the data had insufficient evidence to 

create a higher-risk group (102). Also, identified clusters might not be spatially contiguous 

under this model (88).  

 

Mixture models are prone to less computational stability than the BYM, the risk of label 

switching and component identifiability difficulties, as well as requiring greater care in 

covariate selection due to their influence on risk label categorisation (103). Often the mixture 

models also require greater programming skills, relying on GNU and/or Fortran to run the 

models (101, 104). 

 

Identifying clusters 

 

Another research problem concerned with clustering is image segmentation, in which the 

goal is to classify image pixels (which represent arbitrary areas defined by a grid) into well-

defined clusters (105).  Hidden Potts-Markov random field (MRF) models are commonly 

used in Bayesian image segmentation methods (Box 2.17). However, making inferences on 

these types of models is difficult, hence current image segmentation methods typically rely 

on approximate estimators (106).  A major limitation of such approaches is that they are 

supervised, meaning that the regularisation parameter of the Potts model must be specified a 

priori.  Selecting an appropriate regularisation parameter a priori can be difficult since they 

can be highly dependent on the image.  Unsupervised approaches which self-adjust the 

regularisation parameter are currently possible, but at an enormous computational cost (107). 

 

The recently proposed methodology of Pereyra and McLaughlin (107) permits approximate 

inference on hidden Potts MRFs which is unsupervised and also computationally fast.  The 
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crux of their approach involves dividing the problem into two simpler problems, both of 

which can be solved easily and relatively quickly.   

 
 

Box 2.17 Hidden Potts-Markov random field model 

 

Let 𝑦𝑖 is an element of 𝒚 (𝑦𝑖 ∈ 𝒚) be observations with latent labels 𝑧𝑖 ∈ 𝒛.  For example, 𝑦𝑖 

might represent the intensity of the 𝑖th pixel in a greyscale image, while 𝑧𝑖 identifies a 

segment of the image to which the 𝑖th pixel belongs, for a finite set of segments, {1, … , 𝐾}.  

Given the segment identifier 𝑧𝑖, the intensity of the pixels in that segment will be similar.  For 

example, if the intensities were assumed to be Gaussian, pixels in the 𝑘th segment might have 

the same mean and variance, 

𝑝(𝑦𝑖|𝑧𝑖 = 𝑘) = Normal(𝜇𝑘, 𝜎𝑘
2). 

 

The unobserved random variables 𝒁 = {𝑍𝑖} represent nodes in a hidden Markov random 

field, each node corresponding to a pixel 𝑦𝑖.  For each 𝑍𝑖, a neighbourhood is defined such 

that 𝑍𝑖 only depends on those nodes in the neighbourhood, and is conditionally independent 

of other nodes (the Markov property): 

 

𝑝(𝑧𝑖|𝒛\𝑖) = 𝑝(𝑧𝑖|𝒛𝑗 , 𝑗~𝑖), 

 

where 𝒛\𝑖 denotes all values of 𝒛 except 𝑧𝑖, and 𝑗~𝑖 denotes nodes 𝑖 and 𝑗 are in the same 

clique.  The Hammersley-Clifford theorem states that this conditional probability distribution 

has the form: 

𝑝(𝑧𝑖|𝒛𝑗 , 𝑗~𝑖) =
1

𝑊𝑖
exp(−𝛽𝐻(𝑧𝑖)) 

 

where 𝑊𝑖 is the partition function, 𝛽 is the regularisation parameter, and 𝐻(𝑧𝑖) is the energy 

function of 𝑧𝑖.  In the case of the Potts MRF model, the energy function is chosen to be 

∑ 𝕝(𝑧𝑖 = 𝑧𝑗)𝑖~𝑗 , leading to 

 

𝑝(𝑧𝑖|𝒛𝑗 , 𝑗~𝑖) =
exp{−𝛽 ∑ 𝕝(𝑧𝑖 = 𝑧𝑗)𝑖~𝑗 }

∑ exp{−𝛽 ∑ 𝕝(𝑧𝑗 = 𝑘)𝑖~𝑗 }𝐾
𝑘=1

. 

 

 

Pereyra and McLaughlin (107) compare the results obtained from this method against four 

state-of-the-art supervised segmentation algorithms, and one unsupervised MCMC algorithm, 

each applied to three different datasets of varying complexity.  Visually, the resulting image 

segmentation of the proposed method is comparable to all five other methods.  In terms of 

computational efficiency, the proposed method is at least one thousand times faster than the 

unsupervised MCMC algorithm, and only two or three times slower than the supervised 

algorithms.  Only two or three clusters were used in these tests, so how well this proposed 

method works for larger numbers of clusters is yet to be quantified.  However, these results 

indicate that the proposed method is very promising. 
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Change of Support 

 

One limitation that persists in spatial modelling is the difficulty in making statistical 

inference on spatial support points which differ to the support points provided by the data.  

For example, data may be collected for each SA1, and predictions/estimates of a particular 

variable can be obtained from an appropriate model for these areas quite easily.  But making 

inferences for postal areas, for example, or some arbitrarily defined area is not so 

straightforward.  This is known as a change-of-support problem.  This problem may arise 

when the desired support points for inference cannot be foreseen or constrained to one 

support type at the time of modelling, or when the support points are limited by the data 

available (108). 

 

Current methods have provided solutions to this problem when the underlying data is 

assumed to be Gaussian.  Yet disease mapping studies often have count data and are typically 

modelled by a Poisson or Binomial distribution.  Even for this type of data, methods have 

been developed, such as simple areal interpolation (109), whereby inferences may be made 

on target support points by imputing values from surrounding data support points.  However, 

when the data are not recorded without error, such as with survey data, the uncertainty of the 

estimates at target support points is unknown which limits their inferential usefulness (108). 

 

Bradley et al. (108) proposed new methodology to address these problems by incorporating 

the estimated variance of the data in the model.  The areal count data are interpreted as an 

aggregation of events from a latent, unobserved, spatial point process.  This latent process is 

modelled using a Bayesian hierarchical GLMM.  Specifically, the latent spatial process is 

modelled as a combination of additive covariate and spatial basis function effects, and the 

observed count data, conditional on the latent spatial process, are modelled by a Poisson 

distribution.  Estimates of the variances of the observed data values are modelled jointly with 

the observed data.  By estimating the model parameters at the point level, estimates can be 

obtained for any desired support point by aggregating the latent process.  Including variance 

estimates in the model is not necessary, but doing so provides more precise estimates.   

 

 

2.5.4.2 Survival data 

 

Survival can be measured in several different ways. All-cause, or overall, survival captures 

all deaths regardless of cause. Often net survival is of more relevance, as it aims to capture 

only deaths resulting from the disease of interest. Net survival can be approximated by either 

cause-specific or relative survival. Information on the recorded cause of death is required for 

a cause-specific analysis, whereas for relative survival, deaths due to any cause among cancer 

patients are compared against background population mortality rates.  

 

The Cox proportional hazards model is the most widely used survival model (110, 111).  This 

model is applied to either overall or cause-specific survival, and has no assumptions 

regarding the nature or shape of the underlying survival distribution. Correlation can be 

incorporated between areas by including random effects termed ‘frailties’ (112, 113). 
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However, it does assume a proportional (multiplicative) relationship between the hazard and 

the log-linear covariate function (111), and this assumption is often violated (114). 

 

Some Bayesian spatial cancer survival analyses have preferred to use either overall or cause-

specific survival analyses, and have based their models on variants of the Cox proportional 

hazards model (115), or parametric models such as accelerated failure-time models (116-

118). Survival for multiple cancers has also been jointly modelled with spatial frailties (119). 

However, these either assume accurate cause of death data (if a cause-specific analysis), 

which is a key disadvantage for population-based cancer data, while overall survival analyses 

may have confounding from unrelated differences in mortality between areas.  

 

There have been a few different types of relative survival models incorporating spatial 

components within a fully Bayesian framework. Fairley et al. (120) expanded the additive 

hazard model recommended by Dickman et al. (121) to incorporate spatial and unstructured 

random effect components similar to the BYM model (Box 2.18). 

 
 

Box 2.18 Bayesian spatial relative survival model  

 

Fairley et al. (120) introduced the following relative survival model within a fully Bayesian 

context: 

                     𝑑𝑖𝑗𝑘 ~ Poisson(𝜇𝑖𝑗𝑘) 

 log(𝜇𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑘
∗ ) = log(𝑦𝑖𝑗𝑘) + 𝛼𝑗 + x𝑖𝑗𝑘β𝑘 + 𝑢𝑖 + 𝑣𝑖 

 

where 𝑑𝑖𝑗𝑘 represents the number of deaths resulting from any cause in the ith area, jth follow 

up time from diagnosis interval, and kth age group, 𝑦𝑖𝑗𝑘 is the person-time at risk, 𝑑𝑖𝑗𝑘
∗  is the 

expected number of deaths due to causes other than the cancer of interest, 𝛼𝑗 is the intercept 

(which varies by follow-up year), x is the predictor variable vector (although proportional 

excess hazards are assumed, interactions can be accommodated),  𝑢𝑖 is the spatial component 

assigned an intrinsic CAR prior and 𝑣𝑖 is the unstructured component with a normal prior 

centred on 0.  

 

The term log(𝜇𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑘
∗ ) is a non-standard link function representing the log excess deaths, 

or the deaths considered to result from the disease of interest (121). Follow-up intervals can 

be of any duration, but often annual intervals are used. 
 

 

Many of the advantages for this approach are similar to that of the Cox proportional hazards 

model (indeed, if using cause-specific or overall survival with time split at each event, the 

Poisson piecewise model equates to the Cox proportional hazard model (122)), including no 

assumption of the baseline survival shape. However, the disjointed piecewise process is 

biologically implausible, and covariates such as age cannot be included as continuous 

variables without the model becoming too cumbersome. 
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A similar Poisson piecewise model was combined with Bayesian geoadditive models so the 

baseline hazard was modelled using penalized splines (123). This flexible semiparametric 

model overcomes many of the limitations of the Poisson piecewise approach and incorporates 

a spatial effect, random effects and fixed effects, but is computationally intensive. 

 

An alternative approach is to combine a parametric formulation with splines for flexibility in 

modelling the baseline hazard, producing flexible parametric survival models (122). Cramb et 

al. (124) extended Nelson’s relative survival version (125) to propose the Bayesian spatial 

flexible parametric relative survival model. This approach combines the benefits of flexible 

parametric models: the smooth, well-fitting baseline hazard functions and predictive ability, 

with the Bayesian benefits of robust and reliable small-area estimates. Both spatially 

structured (with an intrinsic CAR prior) and unstructured frailty components are included. 

Advantages of this approach include the ease of including additional complexity, the use of 

individual-level input data, and the capacity to conduct overall, cause-specific and relative 

survival analysis within the same framework (124). 

 

 

2.6 Computation 
 

The practical aspects of producing small-area estimates is discussed in this section, both in 

calculating estimates and available software.  

 

 

2.6.1 Numerical 
 

Unsmoothed estimates can be calculated in any statistical software package, or in a 

spreadsheet. 

 

Direct smoothing approaches such as locally-weighted averages/medians and kernel 

smoothing are available in many GIS packages, including commercial packages such as 

ArcGIS and MapInfo as well as freely-available programs such as GRASS GIS and GeoDa, 

among others (Appendix C).  

 

There are also a range of options for obtaining model-based results, and most statistical 

software will perform these. Parameter estimates from GLMs such as simple forms of the 

Poisson model (see Box 2.10) can be obtained via best linear unbiased estimator (BLUE) 

analyses (Box 2.19). The corresponding approach for GLMMs, composed of both fixed and 

random effects (see Box 2.9), is via best linear unbiased predictor (BLUP) estimation (126). 

If the variances and covariances of random effects are estimated and used in a BLUP 

estimator, then it is referred to as empirical BLUP, or EBLUP (126). Including spatial 

structure within the random effects can improve the EBLUP estimator even further, 

becoming the spatial EBLUP, or SEBLUP, estimator (127).  

 

Both empirical Bayes and EBLUPs use a similar process of estimation. First, the variance 

components are assumed to be known, and BLUPs or EB predictors are obtained for the 
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unknown parameters (128). Then, the variances and covariances are estimated by the method 

of fitting constants/moments, or if normality is assumed, then via maximum likelihood (Box 

2.19) or restricted maximum likelihood methods (126). For further details on these and 

similar methods for computing empirical Bayes estimates, refer to Meza (75). 

 

However, as complexity in the Poisson model increases, alternative methods are often 

required, and this can range from approximating the likelihood via  ‘quasi’ or ‘pseudo’ 

likelihoods (14), through to sampling from the posterior distribution of a Bayesian model. 

 

Although the BLUP and Bayes approaches theoretically produce identical point estimates for 

small-areas (126), in certain circumstances fully Bayesian estimates were shown to have 

smaller MSEs than the corresponding BLUP (129).  

 

Specific software has been developed to enable Poisson kriging estimates to be easily 

calculated. Centroid-based Poisson kriging can be calculated using the freely available 

poisson-kriging.exe (51), which was written using Fortran 77. BioMedware’s SpaceStat 

software (130) is also able to conduct Poisson kriging, including ATP Poisson kriging (in 

addition to many tests for spatial correlation). This software replaces the space-time 

information system (STIS) (131). 

 
 

Box 2.19 BLUE, Maximum likelihood and Least Squares 

 

The least squares estimate is the value that minimises the sum of squared errors (54). More 

formally, for the model 𝑦𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖, the least squares estimate is the �̂� that minimises  

∑ (𝑦𝑖 − 𝑋𝑖�̂�)2𝑛
𝑖=1 . This is also the best linear unbiased estimator (BLUE) if the variance-

covariance matrix of any linear unbiased estimator 𝛽 is greater than or equal to the variance-

covariance matrix of �̂� (132). If the errors 𝜀𝑖 are independent with equal variance and 

normally distributed, then the least squares estimate is also the maximum likelihood estimate 

(54). 

 

Under maximum likelihood, the probability of the likelihood (which is the joint distribution) 

of all observations is maximised in regards to several relevant parameters (12). Maximum 

likelihood estimation has several desirable attributes, including consistency and efficiency, as 

well as being able to handle small departures from the normality assumption (133) 
 

 

Bayesian hierarchical models containing spatially structured components generally cannot be 

solved via numeric integration, but an alternative approach that is well suited to these models 

was developed in the 1950s, although it wasn’t until the 1990s that this became widely 

applied in statistics (134). This method is Markov chain Monte Carlo (MCMC). 
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2.6.2 Markov chain Monte Carlo 

 

Methods such as approximating large-sample exact solutions (asymptotic approximations), 

traditional numerical approaches and non-iterative Monte Carlo methods are likely to either 

be infeasible or produce results with low accuracy when applied to complex statistical 

models, many of which are Bayesian (135). MCMC methods (Box 2.20) are able to reduce 

complex multidimensional problems to a series of lower-dimensional problems, while not 

requiring conjugate structure between the likelihood and the prior distribution (135). MCMC 

samples from the posterior distribution of Bayesian models and has dramatically expanded 

the potential scope of statistical models, thanks to modern computing power (136). 

 
 

Box 2.20 MCMC 

 

A Markov chain has been described as a frog jumping on a set of lily pads (137). Assuming it 

must always land on a lily pad, the probability of jumping onto another (or even the same) 

lily pad depends only on the lily pad it is currently on. Likewise, the future behaviour of a 

Markov chain is dependent only its present state (137).  

 

Provided the Markov chain has converged, the desired summary of the posterior distribution 

is approximated by MCMC, which are simulated random processes conditional on the 

previous value. A range of MCMC algorithms are available, but currently the most popular 

for disease mapping applications is the Gibbs sampler. 

 

The Gibbs sampler (138, 139) is an algorithm that samples from each of the full conditional 

distributions 𝑝(𝜃𝑖|𝜽𝑗≠𝑖, 𝒚) in the model. A single new value of 𝜃𝑖 is generated at each 

iteration, conditional on all other 𝜃’s, as all proposals are accepted in Gibbs sampling (55).  

 

The Gibbs sampler algorithm proceeds as follows for k parameters, given a set of starting 

values {𝜃1
(0)

, … , 𝜃𝑘
(0)

} : 

     1.   Draw 𝜃1
(𝑡)

 from 𝑝(𝜃1|𝜃2
(𝑡−1)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑘
(𝑡−1)

, 𝒚) 

     2.   Draw 𝜃2
(𝑡)

 from 𝑝(𝜃2|𝜃1
(𝑡)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑘
(𝑡−1)

, 𝒚) 

                                     ⋮ 

     k.   Draw 𝜃𝑘
(𝑡)

 from 𝑝(𝜃𝑘|𝜃1
(𝑡)

, 𝜃2
(𝑡)

, … , 𝜃𝑘−1
(𝑡)

, 𝒚) 
 

 

Concerns have been raised with regards to assessing convergence, selecting starting values, 

and the length (and necessity) of burn-in periods for MCMC analyses (140). The 

computational resources required is perhaps their greatest disadvantage, with alternative 

methods seeking to provide good approximations in a drastically reduced timeframe (141). 

However, their ability to directly approximate probabilities (142), and answer a broad range 

of questions (143) remains unsurpassed. 
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Programs have been developed to assist in conducting MCMC-based analyses, including 

BUGS (Bayesian inference using Gibbs sampling) software (91, 144), Stan (which uses 

Hamiltonian Monte Carlo) (145), MLwiN (146), JAGS (Just Another Gibbs Sampler) (147) 

and the R package MCMCpack (148). 

 

 

2.6.3 MCMC approximation methods 

 

The computational requirements and time needed to conduct MCMC analyses can be off-

putting to those considering a fully Bayesian analysis. More recently, a range of 

approximation methods have become available as an alternative to MCMC, with the benefit 

of a reduced computational burden.  

 

The most popular of these within the disease mapping context is integrated nested Laplace 

approximation (INLA), and this is available in an R package (www.r-inla.org/). The 

approximation is broken down into smaller sub-problems, and a method of approximation 

known as Laplace approximation is applied when the densities are near-normal (Box 2.21) 

(149). A wide range of models can be approximated by INLA, including most GLMs, and it 

has been shown to produce good approximations to output from MCMC for cancer 

(simulated and real) data, provided the disease is not incredibly rare (150). 

 

The key advantages of INLA are its speed and flexible model specification (55). 

Disadvantages in its current form are the somewhat restricted range of prior distributions and 

an inability to handle: models not expressible in log-linear form, mixture distributions, as 

well as certain types of missing data/measurement errors (55).  

 
 

Box 2.21 INLA (149) 

 

Critical assumptions in INLA are that: 
 

    1.  The number of hyperparameters is small, and does not exceed 20. (Typically this is 

between two and five.) 

    2.  The distribution of the latent field is Gaussian. When the dimension is high (104-105), 

this is either a Gaussian Markov random field, or close to one. 

    3.  Each observation only depends on one component of the latent field. 
 

 

 

2.6.4 Creating the neighbourhood matrix 

 

Several methods are possible to create a neighbourhood matrix. Adjacency-based neighbours 

can be assigned using any GIS package, provided the polygon arrangement and relationships 

are clean. Sometimes the shapefile will have small artefacts where boundaries do not meet 

precisely, which would require intervention, such as ‘snapping’ vertices within a threshold 

distance together (151). 
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Some statistical programs, such as R, offer several options for creating neighbour matrices, 

including contiguity or distance-based options (including k-nearest neighbour and threshold 

distance). GeoDa also offers a wide range of options for creating and visualising 

neighbourhood matrices (Table 2.1). Most packages offer several export options for the 

resulting neighbourhood matrix, but it is worth ensuring that an appropriate format for the 

software used in further analyses exists.  

 

 

2.6.5 Software 

 

Tables 2.1 and 2.2 summarise the broad capabilities of common software and specific 

examples of software used by method, respectively. Refer to Appendix C for further details 

on software. 

 

Table 2.1 Common mapping, GIS and statistical software and capabilities  

    Analyses 

      Smoothing Model-based smoothing 

Software Type Visualise 

maps 

Neighbour- 

hood matrix 

Spatial 

correlation  

Raw 

estimates 

Locally-

weighted 

Kernel Spatial 

regression  

Poisson 

kriging 

EB HB 

Open source          

Bing Maps Map Y          

BUGS Stat Y Y Y Y      Y 

Epi Info Tools Y   Y       

GeoDa  Tools Y Y Y Y Y Y Y  Y  

GRASS GIS Y          

Google Earth Map Y          

JAGS Stat          Y 

NIMBLE Stat          Y 

PySAL Tools Y Y Y Y Y Y Y  Y  

R Stat Y Y Y Y Y Y Y  Y Y 

SaTScan Tools Y  Y    Y    

Stan Stat          Y* 

Commercial            

ArcGIS GIS Y Y  Y Y Y Y    

MapInfo GIS Y Y  Y Y Y     

MLwiN Stat       Y   Y* 

SAS Stat Y Y Y Y Y Y* Y  Y  

S-Plus Stat Y Y Y Y       

SpaceStat Tools Y Y Y     Y   

Stata Stat Y Y Y Y Y Y Y  Y  

TerrSet GIS Y Y Y Y Y Y     

Abbreviations: Stat=Statistical software, Map=Mapping software, GIS=Geographic Information Systems software, 

EB=Empirical Bayes, HB=Hierarchical Bayes, Y=Yes.  

* Indicates limited functionality, such as lacking programmed CAR prior distributions. Note that often software can interface 

with other software to either provide greater functionality (e.g. between statistical packages and GIS software), or to enable 

programming within the language of convenience (e.g. Stan and JAGS can interface with R). 

Software is considered able to perform a hierarchical Bayes analysis if a random effects term for each area can be modelled. 
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3. Current approaches for small-area cancer estimates 
 

“I often say that when you can measure what you are speaking about, 

and express it in numbers, you know something about it; but when you 

cannot express it in numbers, your knowledge is of a meagre and 

unsatisfactory kind; it may be the beginning of knowledge, but you 

have scarcely, in your thoughts, advanced to the stage of science, 

whatever the matter may be.” 
 

~ William Thomson, 3 May 1883,             

‘Electrical Units of Measurement’ lecture  

 

 

The data used to generate cancer atlases may relate to cancer incidence, mortality, survival, 

or screening data. Methods used to generate published estimates are examined in this chapter. 

 

 

3.1 Small-area cancer screening estimates  
 

Cancer screening is the application of a test to an apparently cancer-free group to identify 

those people likely to have the disease (163). Cancer screening programs involve large 

numbers of people. As such, most studies of small-area variation used unsmoothed 

percentages, and occasionally additional tests were applied to determine areas that showed 

statistically significant evidence of higher/lower outcomes.  

 

Cervical cancer screening was examined in small-areas of Rotterdam, although areas with 

<2000 residents were excluded from the analysis to prevent unstable results (164). 

Percentages were calculated for uptake of screening, and the association with the proportion 

of migrants and specific marital statuses considered. 

 

Cervical cancer screening, breast cancer screening, and bowel cancer screening (faecal occult 

blood testing/colonoscopy) were examined across 205 small-areas of Peel region in Ontario, 

Canada (165). The average population in each area was 4,000 people (range: 2,500 to 8,000). 

Maps were overlaid with the proportion of South Asian people, and also used LISA (166) to 

objectively identify areas of extreme variation. The authors noted that they deliberately did 

not choose a smaller level of resolution due to several issues including the potential for 

unstable rates (165). Another Ontario-based analysis examined the uptake of cancer screening 

tests in conjunction with screening for glucose and cholesterol across 18,950 small areas 

(167), with funnel plots used to identify abnormal areas falling outside the 95% or 99% CI 

for Ontario’s screening rate. 

 

Another descriptive analysis examining a small region of Florida, USA, while not mapping 

screening rates, mapped the ethnicity of each small area (expressed proportionally), and 

showed the location of colonoscopy services on the map (168). 
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3.2 Small-area cancer incidence/mortality estimates 
 

Compared to the numbers involved in a population screening program, the number of people 

who are diagnosed with cancer or who die from cancer in a given time period is relatively 

few. Small numbers mean that spatial analyses of cancer incidence and cancer mortality often 

require some form of smoothing being employed for small-area studies. Nonetheless, 

unsmoothed estimates were mapped for small-area cancer atlases in Canada (169), India 

(170), New York (USA) (171), Pennsylvania (USA) (172), South Australia (Australia) (173), 

Sweden (174), New Hampshire (USA) (175) and the USA (176). Details on some of these are 

available in the associated report: “Grey Literature Review: Internet Published Cancer 

Maps”. 

 

Poisson kriging was used to examine cervical cancer mortality rates in 118 counties across 

four states in Western USA (177). ATP Poisson kriging was used in another study to examine 

age-standardised lung and cervical cancer mortality for two different areas of the USA – one 

with 92 counties of reasonably similar shape and size, and another area of 118 counties with 

varying size and shape (61). ATA Poisson kriging was used to examine age-standardised 

oesophageal cancer incidence over 336 areas in Iran (60), and Poisson kriging has also been 

used to examine lung cancer incidence around Perth in Western Australia (57). 

 

Empirical Bayes methods have been used in several small-area cancer incidence/mortality 

analyses, including: 

 

 Endemic Burkitt’s lymphoma among children in Kenya. This modelled  272 cases 

identified from hospital data  between 1999-2004 across 324 regions (178).  

 Breast cancer mortality on the island of Sardinia (covering 22 regions across 1983-

1987) (179). 

 Pleural cancer mortality was modelled to approximate asbestos exposure in north-

western Italy, across 1,209 areas during 1980-1992  (180). Poisson regression was 

then used to check for an association with lung cancer mortality across the areas 

(180). 

 Lung cancer mortality in Missouri (1972-1981), across 115 areas and 4 age groups 

(45-54, 55-64, 65-74, 75+) (181). 

 Lung cancer mortality ratios among women in 287 central Italian regions (182). 

 Gastric cancer mortality in Hungary investigating an association with nitrate exposure 

over 192 settlements with regularly maintained nitrate records. Proxy information was 

used to adjust for dietary habits, smoking prevalence and socioeconomic status (183). 

 

Fully Bayesian models have also been employed. Geographical variation in mortality from 

haematological tumours (leukaemia, non-Hodgkin’s lymphoma and multiple myeloma) 

(184), thyroid cancer (2) and pleural cancer (185) was examined over 8,077 areas in Spain 

using the BYM model.   

 

Explanatory covariates are often included in models. An area-level measure of sunlight 

exposure was included when modelling lip cancer incidence in Scotland (83). The model 
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used was similar to BYM, but had only one random effect term which was spatially 

structured (83). Age, sex, and age-sex interactions were incorporated into a model examining 

lung cancer mortality in Missouri (186). Atmospheric pollutants and lung cancer mortality in 

Tuscany, Italy, 1995-1999, were modelled using BYM with a nested latent factor model 

(187). An exploration of late stage breast and colorectal cancer incidence during 1995-1997 

across 87 counties in Minnesota, USA also adjusted for a range of environmental effects 

(188). 

 

The inverse distance of each census tract centroid from the nearest hazardous waste site was 

included when modelling leukaemia incidence in upstate New York (67). Similarly, the effect 

of industrial pollution on lung cancer and lymphohaematopoietic cancers in Northern Italy 

was explored (189, 190). Cervical cancer inequalities in stage at diagnosis in the former 

German Democratic Republic was modelled to examine disparities in Papanicolaou testing 

uptake (191). 

 

Although less common, a few analyses have also used different forms of Bayesian 

hierarchical models aimed at enabling disparate changes to be detected. An extension of 

hidden Markov models (which can be considered a generalization of a mixture model) was  

applied to larynx cancer mortality in France (101). Leukaemia incidence in New York was 

modelled using Bayesian spatial partition models (100). 

 

 

3.3 Small-area cancer survival estimates 
 

Survival measures the proportion of people expected to remain alive for a given length of 

time after diagnosis, and the calculations often require individual-level data. Survival is a 

useful measure for exploring and comparing the impact of the healthcare system over time 

and place (162).  When analysing cancer survival estimates across small-areas, it is 

recognised that estimates will be unstable if the resolution is too fine (192). As survival 

calculations focus on the deaths within a specified time from diagnosis, numbers tend to be 

smaller than for either incidence or mortality analyses. 

 

Relatively few small-area survival analyses have been performed, and these have often 

utilised a Bayesian approach. An exception is Huang et al.’s (193) analysis of lung cancer 

and late-stage colorectal cancer survival across small areas in California (and then a more 

detailed analysis of Los Angeles areas). Here the 5-year and 3-year survival estimates were 

mapped, but also the adjusted survival time was calculated for each region and then a spatial 

scan statistic applied to determine areas with higher/lower survival (193). 

 

Empirical Bayes methods were used to model leukaemia under proportional hazards (194).  

Osnes and Aalen expanded a Bayesian Cox proportional hazards model using components 

from the BYM model, to explore regional differences in survival for breast cancer and 

melanoma patients in Norway (162). Acute myeloid leukaemia was modelled in northwest 

England across 24 districts under proportional hazards model using a range of possible 

correlation structures (58). Breast cancer survival in France across 377 areas was modelled 
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using Hennerfeind’s flexible continuous time geoadditive model (195), using metastasis as a 

proxy for staging information (113). 

 

The Bayesian relative survival models incorporating spatial components are growing in 

popularity. Fairley et al. (120) used their Bayesian spatial relative survival model to explore 

variation in prostate cancer survival across 44 regions in Northern and Yorkshire England 

(average population size was ~ 150,000, ranging from <70,000 to 307,000). This same model 

was used to examine geographical variation in breast cancer survival in Catalonia, Spain over 

several different area definitions, down to the level of the census tract (average population of 

just 604 women aged over 15 years, and a standard deviation of 302) (196). This model was 

also applied to cancer data to examine small-area variation across 478 areas of Queensland, 

Australia by Cramb et al. (154, 197) and modified forms were used in detailed analyses of 

breast cancer relative survival across Queensland by Hsieh et al. (198, 199). 

 

Breast cancer relative survival was examined across north-eastern France using the Bayesian 

geoadditive model proposed by Hennerfeind et al. (123), while Cramb et al. (124) 

demonstrated their proposed Bayesian spatial flexible parametric relative survival model on 

breast, colorectal and lung cancer in Queensland.  

 

 

3.4 Summary and conclusion 

 

Cancer is a relatively rare disease. When cancer measures are mapped, it is important these 

estimates are reliable. For cancer outcomes such as incidence, mortality and survival, most 

analyses use some form of smoothing. Models based on GLMMs are often employed, and 

these also have the advantages of the ease of incorporating covariates, considering 

interactions and examining model fit.  

 

Even for cancer screening data, where numbers are exponentially higher, producing 

unsmoothed estimates often constrains the level of resolution possible, or necessitates 

excluding some of the areas. Smoothing could potentially be useful for screening data as 

well, depending on the level of resolution of areas. 
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4. Further topics in Bayesian models 
 

“The most important questions of life are indeed,  

for the most part, really only problems of probability.” 
 

                                                ~ Pierre Simon Laplace 

Théorie Analytique des Probabilités, 1812 

 

 

4.1 Inclusion of multiple nested geographies 
 

Models formulated within the Bayesian framework are naturally hierarchical, given their 

expression of a statistical model as a series of related layers.  For this reason, they are an 

appealing choice for the analysis of nested data structures. 

 

The analysis of health outcomes often involves the integration of data from multiple sources, 

observed at different scales.  In a spatial setting, it is common for these scales to be 

embedded in one another – for example, individuals within regions or regions within a state – 

resulting in a hierarchical or nested data structure.   

 

Bayesian hierarchical models can be developed to take account of this structure, to (i) allow 

for spatial correlation between effects defined at the same spatial scale; and (ii) 

relate/compare effects defined at different levels.  The latter form of inference can be 

achieved through careful consideration of prior distributions and, for the most part, their 

specification should be guided by the comparative inferences the analyst wishes to draw 

(200). An example of this modelling approach is provided in Box 4.1. 

 

In this example, the defined model allows for three main inferences:  

1. The comparison of state estimates (𝜶) relative to the overall average estimate (𝛾). 

2. The comparison of statistical division estimates (𝜷𝑘) within each state (𝑘 = 1, … 𝐾), 

relative to the overall estimate for state 𝑘. 

3. The comparison of statistical subdivision estimates (𝜽𝑗𝑘) within each statistical 

division (𝑗 = 1, … 𝐽𝑘), relative to the overall estimate for statistical division 𝑗. 

 

Bayesian hierarchical models are often referred to as multilevel (54) or multiscale (55) 

models.  In the non-Bayesian paradigm, multilevel models are a popular model class for 

analysing data of the aforementioned form.  Common among these methodologies is the aim 

of apportioning variation in the outcome to different levels of the hierarchy (Figure 4.1).  

When formulated within the Bayesian setting, a multilevel model can itself be re-expressed as 

a hierarchical model, through the use of hierarchical centring (201); for this reason, these 

terms are often used interchangeably.   
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Box 4.1 Nested geographies as a hierarchical model 

 

Figure 4.1 Schematic representation of a hierarchical model 

 
Let 𝑦𝑖𝑗𝑘 = The number of cancer cases in subdivision 𝑖, within division 𝑗, within state 𝑘. 

 

                            𝑂𝑖𝑗𝑘~Poisson(𝐸𝑖𝑗𝑘𝜃𝑖𝑗𝑘) 

                   log (𝜽𝑗𝑘)~Normal𝐼𝑗𝑘
(𝛽𝑗𝑘,

1

𝜎𝜃
2 (𝑫𝜃𝑗𝑘

− 𝑾𝜃𝑗𝑘
)−1) 

                               𝜷𝑘~Normal𝐽𝑘
(𝜶𝑘 ,

1

𝜎𝛽
2 (𝑫𝛽𝑘

− 𝑾𝛽𝑘
)−1) 

 

                                 𝜶~Normal𝐾 (𝛾𝟏,
1

𝜎𝛼
2

(𝑫𝜶 − 𝑾𝜶)−1) 

 

                                 𝛾~𝑝(𝛾) 

 

The matrices 𝑫.. and 𝑾.. encode spatial correlation by defining the neighbourhood structure 

among geographic units defined as the same spatial scale. Each variance component is 

assigned a prior distribution, similar to the earlier Bayesian models in this report. The overall 

intercept (𝛾) is also assigned a prior distribution, denoted generically as 𝑝(𝛾).  Examples of 

prior distributions include a Uniform distribution, 𝛾~Uniform(−1000,1000) or a Normal 

distribution with large variance, 𝛾~Normal(0,1000). 
 

State k

Statistical Division 1

Statistical Subdivision 1

Statistical Subdivision i

Statistical Subdivision Ijk

Statistical Division j

Statistical Division Jk

… 

… 

… 

… 
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In Australia, Turrell et al. (202) proposed a multilevel model with five levels: individuals 

nested in statistical local areas, statistical subdivisions, statistical divisions and States, for 

associating socioeconomic disadvantage with all-cause mortality (135).  In the Atlas of 

cancer mortality in the European Union (203), Poisson regression was used to attribute 

variation in cancer mortality rates to age groups, countries and regions nested within 

countries.  Models for both applications were developed in a non-Bayesian setting and 

correlation among spatially indexed effects was not accounted for.   

 

The extension of these models to the Bayesian framework to allow for spatial smoothing is 

relatively straightforward. Lawson (55) used a Bayesian hierarchical model to analyse oral 

cancer incidence across the state of Georgia, USA, including both public health districts and 

nested counties plus the contextual effects of district on county. In this example, the joint 

model was slightly preferred over separate models for district and county.  Another example 

is provided by Louie and Kolaczyk (204), who exploited the Bayesian approach to detect 

areas with significantly increased risk. They analysed aggregated count data across the three 

nested levels of region (one area), province (nine areas) and municipality (287 areas). 

Although their focus was not on estimation, it would be straightforward to combine this to 

produce a disease mapping approach with testing aspects. Bayesian multiscale analyses 

require careful consideration of prior selection, but have many advantages.  

 

 

4.2 Inclusion of remoteness and area-level socioeconomic status  
 

In Australia, there is substantial interaction between the geographic remoteness and 

socioeconomic level of an area, with more remote areas often being more socioeconomically 

disadvantaged as well as having higher levels of poverty (205). As such, understanding the 

differences between different combinations, such as comparing urban very advantaged areas 

to very remote very disadvantaged areas, may be desirable. Common approaches to 

modelling this scenario includes either including an interaction term between the levels of 

remoteness and socioeconomic disadvantage, or creating a composite variable and either 

stratifying the analysis on this term, or including the levels of the composite term as dummy 

variables in the model (without any remoteness/socioeconomic main effects).  

 

Advantages of stratifying the data are the simplicity, and results can be intuitively easier for 

non-statisticians to grasp. Disadvantages include an inability to compare between the areas as 

thoroughly as when they are in the same model.  

 

Advantages of including a composite variable is the simplicity of calculating parameter 

estimates, however, the disadvantages include the inability to untangle main effects, which 

requires careful interpretation of results (206). Previous examination of a model with main 

effects would be recommended before using this approach.  

 

The key advantage of including an interaction between the levels of the variables is the 

flexibility. Interactions with other variables of interest, such as age groups, could also be 

incorporated easily, while still measuring the impact of the main effects.  
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The above advantages and disadvantages are true even if a Bayesian approach is not used. 

Using a Bayesian regression model would additionally require considering the prior choice 

on parameters with care, ensuring convergence and identifiability of all parameters of 

interest, and assessing the model via sensitivity checks (207). If spatial correlation is desired 

to be included in the analysis through using a structured prior, such as the CAR prior 

distribution, stratification would require a separate adjacency matrix to be generated for each 

combination, due to the varying number of included areas. The Bayesian approach 

additionally facilitates comparison of non-nested models, so can assist in choosing between 

model options. 

 

 

4.3 Use with survey data 
 

Sample surveys are commonly used to obtain a variety of information over time for both the 

total population, as well as a variety of subpopulations (126). Although these subpopulations 

can be any domain, such as sociodemographic groups, our focus in this section will be on 

geographic subpopulations. 

 

Due to cost, as well as unanticipated uses of survey data, often a sample size is not 

sufficiently large to enable reliable estimates for all domains. Spatial subpopulations thus 

require the use of small-area estimation methods, which may involve statistical models (126). 

Note that in contrast to our earlier definition of small-areas (Section 1.2), which was based on 

population size, a small-area for survey data is based on having  a small (and insufficient) 

sample size, regardless of population (208).  

 

The focus of small-area estimation is on producing reliable estimates of means, counts, 

quantiles, as well as the associated error, for areas with limited/no sample data (209). When 

outcome data are lacking, auxiliary covariate information (such as obtained from censuses or 

disease registries) with good predictive power, becomes critical (209). Auxiliary variables are 

thus used to ‘borrow strength’ (208).  

 

A recent comparison of a range of procedures, spanning from weighted ‘raw’ estimates 

through to models with random effect components, found that model-based estimates were 

generally the ‘more effective’ approach (208). In practice, and especially in the Australian 

context, direct estimates are often suppressed for at least some areas due to small numbers 

and high uncertainty.  

 

Providing the model is appropriate and the sampling is robust, there are several advantages to 

modelling small-area estimates from survey data, such as (126, 210): 

1. The assumed model allows ‘optimal’ estimators to be obtained 

2. Each estimator can have area-specific measures of variability  

3. Sample data can be used to validate models 

4. Complicated data structures (such as spatial correlation) can be examined by a variety 

of models. 
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When modelling survey data, the predominant paradigm employed is that of the sampling 

model (see Section 2.5) (54). Most models for survey data are mixed effects models built on 

the model developed by Fay and Herriot (211). It is now standard practice to include not just 

the variation in auxiliary variables across small areas, but to also add random area effects to 

further account for between area variability (210). Linear estimators in GLMMs can be 

estimated by EBLUP, empirical Bayes, or hierarchical Bayesian models. Both empirical and 

hierarchical Bayesian methods are also appropriate for a broader range of modelled 

outcomes, whether binary or count data, and alternate model structures (126).  

 

Hierarchical Bayes approaches are now extensively utilised for small-area estimation (126). 

In addition to the advantages mentioned in Section 2.5.4, benefits within the sampling context 

include obtaining smaller coefficient of variations for direct estimates, especially for areas 

with smaller populations (126). They also avoid the problems that EBLUP or EB can have if 

the restricted maximum likelihood (REML) model estimate variance is estimated to be 

around zero, which results in all the estimates of �̂�𝒊 being given a weight of zero (212). Any 

small-area estimation model can be expanded to the hierarchical Bayesian context (Box 4.2). 

This extends to unmatched sampling and linking models, or incorporating spatial correlation. 

 
 

Box 4.2 The basic area-level model (126) 

 

This model can be expressed as: 
 

𝜃𝑖 = 𝐳𝑖
𝑇𝜷 + 𝑏𝑖𝑣𝑖 + 𝑒𝑖 

 

where 𝜃𝑖 is an estimate of the ith area parameter 𝜃𝑖 = 𝑔(𝑌𝑖), 𝑧𝑖 is a vector of area-level 

covariates, 𝑏𝑖 is a known positive constant, 𝑣𝑖 are area effects that are considered to be 

independent and identically distributed with a mean and variance of (0, 𝜎2) and are 

independent of the sampling errors 𝑒𝑖 which are independently distributed with a mean of 0 

and known variance 𝜓𝑖. 

 

The hierarchical Bayes version of this model has the addition of priors on the following 

levels, for instance: 
 

 𝜃𝑖~Normal(𝜃𝑖 , 𝜓𝑖) 
 

      𝜃𝑖~Normal(𝐳𝑖
𝑇𝜷, 𝑏𝑖

2𝜎𝑣
2) 

 

    𝜎𝑣
2~Uniform(−∞, ∞) 

 

Note that using the flat prior shown on 𝜎𝑣
2 may not be ideal when the sampling variances 

differ substantively over areas. 
 

 

The main disadvantage of using a Bayesian analysis is that it should be conditional on all 

variables that affect the probability of inclusion and non-response, and this can rapidly result 

in extremely complicated models, especially when aiming to produce population estimates 

from sample survey data that are not representative of the population (213). Although 

weighting is often used in this situation, producing appropriate weights can be difficult, and 

empty cells can cause additional difficulties for weighting in the small-area context (213). 
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Suggestions have included using multiple Bayesian hierarchical models and then averaging 

over the posterior distribution, although this remains an area of active research (214). 

 

 

4.4 Spatio-temporal data 
 

Spatio-temporal data consists of data points which are stratified both by space and time. The 

rate at which spatio-temporal data is generated and collected is ever-increasing, and new 

methods are persistently being developed to deal with this type of data. Spatio-temporal 

models can be seen as a natural extension of spatial models, but this extension increases the 

complexity, both in terms of notation and computation, and introduces new complications to 

be addressed, such as how to account for interactions between space and time. Moreover, 

difficulties in spatial modelling, such as the handling of missing data, are exacerbated in 

spatio-temporal modelling (44, 215). 

 

Nonetheless, spatio-temporal models have many benefits in interpretation of overall patterns 

of risk and dynamics, as well as improved accuracy compared with purely spatial models (216-

218). 

 

Naturally, much of the earliest work on Bayesian spatio-temporal models focused on 

extending the BYM model. The CAR prior used in the BYM model can define 

neighbourhood structures across space and time, so that an area’s neighbours includes spatial 

neighbours as well as its own value in the previous and following time periods (77).  

 

One of the earliest Bayesian approaches was the Bernardinelli space-time model (Box 4.3) 

(219). This has been applied to diseases such as insulin-dependent diabetes mellitus (220), 

and leishmaniasis (221). Covariates have been included (82, 222), and in some cases, errors 

in the estimates of indirectly observed covariates (such as, for example, estimating cigarette 

smoking prevalence from survey data) have also been incorporated (222, 223). 

 
 

Box 4.3 The Bernardinelli spatio-temporal model 

 

Let 𝑂𝑖𝑡 denote observations from area 𝑖 = 1, … , 𝐼 at time 𝑡 = 1, … , 𝑇. The Bernardinelli 

model can then be expressed as follows:  
 

𝑂𝑖𝑡~ Poisson(𝐸𝑖𝑡𝜃𝑖𝑡) 
 

log(𝜃𝑖𝑡) = 𝛼 + 𝑢𝑖 + 𝛾𝑡 + 𝛿𝑖𝑡 
 

where 𝑌𝑖𝑡 are the observed cases for the ith area and tth time interval, 𝐸𝑖𝑡 are the expected 

number of cases, 𝜃𝑖𝑡 are the underlying relative risks, α is the mean log-rate over all areas, 𝑢𝑖 

represents the area effect and follows an intrinsic CAR distribution, 𝛾𝑡 is the mean linear time 

trend over all areas and 𝛿𝑖𝑡 represents the difference between the area-specific trend and the 

mean trend 𝛽𝑡 (219). In this model, the intercept is the sum of 𝛼 + 𝑢𝑖, while the trend is the 

sum of 𝛾𝑡 + 𝛿𝑖𝑡 (219). The prior for 𝛿𝑖𝑡was a modified CAR distribution that allowed for 

correlation between the intercept and trend.   
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However, the restriction to linear trends over time in the Bernardinelli model was an 

important limitation (219). Further extensions have been proposed to overcome this, 

including using quadratic instead of linear time trends (221, 224). In contrast, Waller et al. 

(225) applied the BYM model to each time point separately. Although this allowed the spatial 

structure to evolve over time, it essentially treated time as exchangeable (225, 226). This may 

not be ideal for modelling a disease such as cancer since it would be unlikely to have a 

separate spatial distribution within each time period (227).  

 

Spatio-temporal interactions have also been incorporated.  Sun et al. (227) and Kim et al. 

(228) included random spatial and spatio-temporal interaction effects when modelling cancer 

mortality in Missouri, but the temporal component was still restricted to a linear form (229). 

Abellan (216) included a space-time interaction term in a BYM-type model to capture any 

departure from predictable patterns based on the overall time trend and the overall spatial risk 

surface. Further extensions allowed for random spatial, temporal and spatio-temporal 

interaction terms, and was used to examine prostate cancer incidence in Iowa over six time 

periods of 5-year groupings (229). 

 

Mixture models have also been extended to a spatio-temporal formulation, which were 

applied to lung cancer incidence and mortality in Germany for 30 years (divided into three 

time periods) across 215 counties (230).  

 

The BYM model has also been combined with dynamic models (231). Dynamic models 

allow estimates to ‘borrow’ strength from adjacent timepoints, so do not assume linearity or 

stationarity, but instead enable non-parametric estimation of temporal trends (226, 231). This 

means time-changing effects of covariates can be included (231). In principle this model 

allows for estimation of any age-period interaction, including cohort effects (224). This 

model was demonstrated on Ohio lung cancer mortality data, stratified by age, gender, race 

for each year (of 21 years) and each county (of 88 counties) (231).   

 

Specific age-period-cohort (APC) Bayesian hierarchical spatio-temporal models have also 

been proposed as a method to jointly study the spatial pattern of disease risk and evolution in 

time (232). Generally the BYM model again forms the basis, with additional time main 

effects defining age, period and cohort specific parameters; space-time interactions  as 

specified in Knorr-Held (226); or cohort effects (232). Time effects are assumed to vary 

smoothly over space (232).  These models have been applied to lung cancer in Tuscany 

(232), and stomach cancer in Germany (224). A broader version of this model was proposed 

which incorporated age-area and age-time effects (233). However, the inclusion of cohort 

effects increases model complexity, and cohort effects in small areas may be tenuous, 

particularly if there are high rates of migration between areas which would dilute cohort by 

birthplace effects (233).  

 

While methods for modelling spatio-temporal data have only transpired in the last few decades, 

a plethora of spatio-temporal models now exist and continue to grow in number.  The complex 

nature of spatio-temporal data and the underlying processes that give rise to such data 

necessitates complex models.  Bayesian hierarchical models are particularly well-suited for this 

task, as they provide a flexible way to describe and relate model parameters.  The use of prior 
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distributions also makes it easy to account for spatial and/or temporal heterogeneity (i.e. 

autocorrelation and/or clustering), as well as uncertainty and expert knowledge (87, 215).  
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5. Recommendations  
 

“Any approach to scientific inference which seeks to 

legitimize an answer in response to complex 

uncertainty is, for me, a totalitarian parody of a 

would-be rational learning process.” 
 

                                   ~ Adrian F. M. Smith, in (234) 

 

This section summarises the issues and outlines some approaches for determining an 

appropriate method of analysis of spatial data in a given situation. 

 

 

5.1 When should smoothing/modelling replace direct estimation? 
 

If a raw, unsmoothed estimate possesses a sufficient level of reliability for the desired 

purpose then more detailed methods may not be necessary. Nonetheless, the definition of 

‘statistical reliability’ varies between different agencies and countries, even when used for 

similar purposes (208). Often the suppression of estimates is dependent on both the 

underlying counts as well as the uncertainty in the estimate (47), and attempts to increase 

counts to sufficient levels may involve aggregating over the regions of interest.  

 

The key advantages of smoothing/modelling are that rates can be stabilised at the resolution 

of interest, and noise in the rates resulting from differences in population size is reduced (47).  

 

Waller and Gotway (47) suggested that smoothing should be considered when: 

1. The addition of one event (disease case/death), or one more person at risk, results in a 

large difference (such as 25% or more) in at least one area’s rates. 

2. The number of events (rate numerator) is less than three for at least one area. 

3. The population at risk per area is small (for instance, less than 500 people), and these 

numbers vary by an order of magnitude across the areas. 

 

Even if the raw estimate meets confidentiality/reliability/precision guidelines, modelling is 

recommended when it is desirable to: 

 Include covariates 

 Understand the underlying pattern of risks. 

 

Validation of results (either external or internal) is important regardless of the method chosen 

(126). 

 

 

5.2 What type of smoothing/modelling should be used? 
 

The accuracy of the method of smoothing – whether model-based or not – is critical. Areas of 

high and low risk should be correctly identified, while artificially elevated, unstable rates 
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should be reduced (235). No trends or patterns should be induced by the method. Uncertainty 

should also be quantified. 

 

Building on suggested practical guidelines from Griffith (236) as well as Waller and Gotway 

(14) regarding the choice of spatial proximity: 

1. Using any reasonable method for modelling spatial correlation is preferable to 

assuming the data are independent. 

2. Exploratory spatial data analysis can ensure the choice of spatial dependence is 

supported by the data. 

3. Comparing the results from several different types of spatial models is also useful. 

4. Spatial correlation reduces the amount of information – the effective sample size. A 

very rough rule of thumb is to assume it will halve the information contained in the 

data. So, if 30 data values are needed assuming independent and identically 

distributed data, 60 correlated values should be used. 

5. It is vital that the method used accounts for population heterogeneity. 

6. Parsimony is still important. Choose the simplest model that adequately describes the 

data without compromising interpretation. 

 

When the aim is to explore the data, simplicity, speed and ease of use is preferable (47). 

When the aim is to perform more detailed inferential analyses involving adjustment for 

confounders, hypothesis tests, and/or ranking of areas, Bayesian methods offer several 

advantages (47). Although no method perfectly compensates for small counts (237), some 

approaches perform better than others. Table 5.1 provides an overview of the main 

approaches discussed in this report.  

 

Note that it is impossible to select the ideal model prior to examining the data. The amount of 

smoothing that occurs is dependent on both the model and the data (86). Generally, smaller 

counts will result in greater smoothing, and vice versa. 

 

 

5.3 What methods should be used for a cancer atlas? 
 

A cancer atlas may be purely descriptive or it may have a purpose or goal specific to a 

particular group of users. Therefore, the first step is to obtain input from potential end users 

to identify their requirements in using the maps (238). Specific methods may be better suited 

to different purposes, whether for providing an accurate overview, guiding further 

epidemiological studies, uncovering cancer hot-spots, or comparing regions. 

 

However, in most situations we recommend the use of Bayesian hierarchical models for the 

reason that their output is useful in decision-making (239). A Bayesian model is able to rank 

estimates, compare between regions, and provide robust, reliable estimates with associated 

uncertainty (239). These models also have more flexibility in adjusting to changing purposes 

and aims. 
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5.4 Conclusion 
 

There is no universal approach to analysing spatial data. The characteristics of the data, the 

presence of spatial correlation, and the purpose of the analysis are all important  

considerations. 

 

In public health, spatial analyses are increasing in importance and popularity. Increasingly, 

decisions regarding resource and service allocation are influenced by mapped estimates. It is 

therefore vital that the small-area estimates used are robust, accurate and reliable.  

 

Our recommendations are for unsmoothed estimates as well as directly smoothed estimates to 

be calculated and mapped as part of the exploratory data analysis. For producing final 

estimates, modelling that incorporates smoothing has many advantages.
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Appendix A Glossary  
 

Asymptotic Here, referring to large sample. 

 

Bandwidth In kernel smoothing, it refers to the maximum distance from an 

area that its influence is expected to extend. Beyond this, the 

kernel is set to zero (see Box 2.8). 

 

Boundary effects Areas on the ‘edge’ of the analysis region have fewer neighbours 

as neighbours beyond the boundary are excluded. 

 

Choropleth map Displays the value of interest on a set of regions within the study 

area. 

 

Convergence In MCMC analysis, the point at which it is reasonable to believe 

that samples are truly representative of the underlying stationary 

distribution of the Markov chain. 

 

Covariance A measure of the dependence between two random variables, 

and how they change together (see Box 2.7). 

 

Covariate   In statistics, a covariate is a variable that is possibly predictive of 

the outcome under study. A covariate may be of direct interest or 

it may be a confounding or interacting variable. 

 

Cross-validation A model validation technique assessing how the results from a 

statistical analysis will generalise to an independent data set. 

 

Direct method of 

standardisation  

Apply stratum-specific rates observed in the populations of 

interest to a standard population. The ratio of two directly 

standardised rates is called the comparative incidence ratio (see 

Box 2.5). 

 

Gaussian An alternative term for the Normal distribution, which is a 

symmetrical bell-shaped curve. 

 

Geostatistical data Point-referenced data. 

 

Gibbs sampling See Box 2.20. A common form of MCMC sampling. 

 

Hamiltonian Monte 

Carlo 

Original name is Hybrid Monte Carlo, as this is a hybrid 

between traditional dynamical simulation and the Metropolis 

algorithm. Used by Stan software. 
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Hidden Markov model Represents probability distributions over sequences of 

observations. Assumes that the state of the process generating 

the data is hidden, and that the current state is independent of all 

others except for the one immediately prior to it. 

 

Hierarchical model   A model written in a hierarchical form or in terms of sub-

models. 

 

Hyperparameter   A parameter in a prior distribution. 

 

Hyperprior distribution A prior distribution on a hyperparameter, i.e., on a parameter of 

a prior distribution. 

 

Incidence   A measure of the risk of developing a disease within a specified 

period of time. 

 

Indirect method of 

standardisation   

Apply stratum-specific reference rates to the populations of 

interest. The ratio of two indirectly standardised rates is called 

the SMR (see Box 2.6). 

 

Kernel function A kernel is a weighting function used in non-parametric 

estimation techniques. Common types of kernel functions 

include uniform, triangular, Gaussian, quadratic and cosine (see 

Box 2.8). 

 

Likelihood   The probability of the evidence given the parameters. It is the 

probability of a given sample being randomly drawn regarded as 

a function of the parameters of the population. 

 

Marginal mixture 

models 

 

A model based on the assumption that the total space can be split 

into local regions where the responses come from the same 

distribution. Similar to spatial partition models. 

 

Markov chain    A mechanism for generating plausible parameter value, whereby 

the value to be drawn depends on the previously drawn value. 

 

Markov chain Monte 

Carlo (MCMC) 

A class of algorithms for sampling from probability distributions 

by constructing a Markov chain that has the desired distribution 

as its equilibrium distribution (see Box 2.20). 

 

Monte Carlo methods A broad class of computational algorithms that use repeated 

random sampling to obtain numerical results. 
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Non-parametric model The structure of the model is not fixed, but determined by the 

data. The number and nature of parameters are flexible. 

(Compare against parametric.) 

 

Over-dispersion In the statistical context, the presence of greater variability in a 

data set than expected using a given statistical model. 

 

Parameter A value used to represent a certain population characteristic 

which is usually unknown and therefore has to be estimated. 

 

Parametric model Assumes there is an underlying probability distribution based on 

a fixed set of parameters. 

 

Posterior distribution A probability distribution on the values of an unknown 

parameter that combines prior information about the parameter 

contained in the observed data to give a composite picture of the 

final judgements about the values of the parameter. 

 

Predictor A predictor variable is also known as an independent variable. 

 

Prevalence The number or proportion of cases or events or conditions in a 

given population. 

 

Prior distribution A probability distribution that represents the uncertainty about 

the parameter before the current data are examined. 

 

Random effects Effects that account for differences among the individual 

observational units in the sample, which are randomly sampled 

from the population. These effects usually conform to a 

specified distribution (typically a Normal distribution) and have 

a mean of zero. 

 

Regression A statistical technique for estimating the relationships among 

variables. 

 

Relative survival A standard estimate of net survival (measuring survival from the 

disease of interest) in population based disease survival studies 

(see Box 2.18). 

 

Risk factors An aspect of personal behaviour or lifestyle, an environmental 

exposure, or an inborn or inherited characteristic that is 

associated with an increased occurrence of disease or other 

health-related event or condition. 
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Semi-parametric model A model containing parametric and nonparametric components. 

Often the nonparametric components are not of interest, such as 

the baseline hazard in the Cox proportional hazards model. 

 

Sensitivity checks These check the influence of model inputs (such as prior 

distributions) on the variation in model output. 

 

Spatial partition models 

 

A model based on the assumption that the total space can be split 

into local regions where the responses come from the same 

distribution. Similar to marginal mixture models. 

Variance 

 

A measure of how far values are spread out from their mean. 

The variance is the square of the standard deviation and the 

covariance of a random variable with itself (see Box 2.7). 

 

 
Note: Several of these definitions were obtained from or based on the glossary in (239). 
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Appendix B Bayesian disease mapping tutorial 
 

The following is from (239): 

 

Making the most of spatial information in health: A tutorial in Bayesian disease 

mapping for areal data 

Abstract 

Disease maps are effective tools for explaining and predicting patterns of disease outcomes 

across geographical space, identifying areas of potentially elevated risk, and formulating and 

validating aetiological hypotheses for a disease. Bayesian models have become a standard 

approach to disease mapping in recent decades. This article aims to provide a basic 

understanding of the key concepts involved in Bayesian disease mapping methods for areal 

data. It is anticipated that this will help in interpretation of published maps, and provide a 

useful starting point for anyone interested in running disease mapping methods for areal data. 

The article provides detailed motivation and descriptions on disease mapping methods by 

explaining the concepts, defining the technical terms, and illustrating the utility of disease 

mapping for epidemiological research by demonstrating various ways of visualising model 

outputs using a case study. The target audience includes spatial scientists in health and other 

fields, policy or decision makers, health geographers, spatial analysts, public health 

professionals, and epidemiologists. 

 

 

Introduction 

Disease mapping is a flourishing field due to the growing amount of routinely collected 

health information worldwide (240). Advances in geographic information systems have 

greatly aided the analytical manipulation and visual representation of spatial data (241). 

Spatial information in health is especially useful for informing the locations of disease 

occurrences and the onus is on making the best possible use of this information.  

 

Some excellent introductory guides for disease mapping are available in the literature. 

Nonetheless, many of these are either not intended for non-statistical audiences, or lack 

specific details. For instance, Elliot et al. (242) present a comprehensive review of the recent 

developments in spatial epidemiology but the statistical methods require a level of 

background knowledge which may not be suitable for beginners. Marshall (218) covers a 

broad range of methods for the analysis of the geographical distribution of disease, rather 

than upskill the reader in using particular methods. Lawson and Williams (39) provide a 

broad overview of the issues concerning disease mapping but is short on specifics (243). 

Banerjee et al. (44) presents a fully model-based approach to all types of spatial data, 

including point level, areal, and point pattern data. Cramb et al. (159) offer insight into the 

decisions made in generating a health atlas, but is not intended as an entry-level article for a 
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non-statistical audience. This article fills the niche by providing motivation, definition and 

description at a general level, and illustrating these ideas via a substantive case study.  

Although disease mapping has been undertaken in various forms for over 100 years, the 

opportunity now exists to use model-based maps that acknowledge uncertainty in inputs and 

outputs (244, 245), take account of the spatial nature of the data to ‘borrow strength’ from 

neighbouring areas in order to improve small area estimates, and can provide probability 

statements (246). In this article, we describe Bayesian disease mapping for areal data (39, 55) 

as an approach that addresses these issues. We focus on a running example of mapping 

cancer, although the methods are applicable to other diseases.  

  

The primary purpose of this article is to provide a basic understanding of the key concepts 

involved in Bayesian statistical models for disease mapping of areal data. We commence with 

a discussion of why disease model-based mapping methods are required. Background on 

Bayesian methods typically used for disease mapping is then provided, and then some of the 

cartographic outputs commonly used are discussed, including methods for indicating 

statistical uncertainty in relative risk of disease.  

 

  

Case Study: Cancer in Australia  

Cancer is now the world’s and Australia’s biggest killer (247). The number of cases 

diagnosed continues to increase worldwide due to population growth and aging, with the 

increasing prevalence of physical inactivity, poor diet and reproductive changes (such as later 

parity) also contributing (248). In Australia, cancer accounts for almost one-fifth (19%) of the 

total disease burden (249).  

 

Disparities in cancer outcomes across broad socioeconomic status and urban/rural categories 

have been reported internationally (250-252). Within Australia, there are disparities in cancer 

outcomes with respect to geographic remoteness and socioeconomic status (249). Cancers 

such as cervical and lung had higher incidence and mortality as remoteness or area-level 

disadvantage increased. Furthermore, the five-year relative survival from all cancers 

combined decreased with greater remoteness and greater socioeconomic disadvantage.  

  

Understanding disparities in these broad areas, while useful, is unlikely to accurately reflect 

the heterogeneity in outcomes at the local level. Efforts to monitor and reduce cancer 

disparities can benefit greatly from quantifying variation across population groups and 

pertinent, small geographical areas. An understanding of the geographic patterns of cancer 

enables health decision-making by health service planners, clinicians, epidemiologists and 

industry groups to be more accurate and effective, for example by targeting policy 

development and resource allocation at areas of greater need (22, 253).  

  

Cramb et al. (154) produced the first Atlas of Cancer in Queensland to describe geographical 

variation in cancer incidence and survival across small areas in Queensland, using routinely-

collected health information from the Queensland Cancer Registry. For the first time, 
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Bayesian model-based cancer incidence and survival maps for Queensland were 

systematically presented at a comprehensive level. The Atlas significantly contributed to the 

understanding of geographical variation of cancer incidence and survival across Queensland, 

and subsequently influenced government policy decisions.  

 

 

Methods  

Disease maps are a visual representation of disease outcomes. The use of disease maps to aid 

decision making in epidemiological and medical research is well recognized (254). Disease 

maps are effective tools for explaining and predicting patterns of disease outcomes across 

geographical space, identifying areas of potentially elevated risk, and formulating and 

validating aetiological hypotheses for a disease (4). They are able to uncover local-level 

inequalities frequently masked by health estimates from large areas such as states, regions or 

cities (255),  enabling the development of disease reduction and prevention programs 

targeting high-risk populations, see for instance, Mason et al. (253) and Kulldorff et al. (22) 

who have used cancer maps to depict the geographic patterns of cancer outcomes.  

 

Disease mapping encompasses small area studies that use data aggregated over small areas 

and take into account local spatial correlation, see for example, Clayton and Kaldor (256); 

Cressie and Chan (257); Besag et al. (81) and Bernardinelli et al. (222). Data sparseness is 

common in small area analyses, especially when working with less common diseases. A 

small number of observed and expected disease occurrences leads to unstable risk estimates 

(258).  

 

The problem of potentially unstable risk estimates for sparse spatial data needs to be 

mitigated to obtain reliable estimates. In practice, this is achieved by implementing spatial 

smoothing techniques. Spatial smoothing effectively “borrows strength” across small areas, 

so that the disease rate estimated for an area with a small population denominator would be 

weighted towards the estimated disease rate of neighbouring areas that have larger 

denominators. The estimates obtained by smoothing information from neighbouring areas are 

more reliable and robust due to the increased precision in the risk estimates in areas with few 

observations (258). In the context of disease mapping for small areas, the implementation of 

spatial smoothing is commonly achieved via the incorporation of a conditional autoregressive 

prior distribution for the spatial effects (see Lee (94) and the “Bayesian Spatial Statistical 

Models” section for details). 

  

A disease mapping model is essentially a regression model that links a disease outcome to a 

set of risk factors. An important concept in disease mapping models (which is common to 

many other regression models) is the use of random effects. In this context, random effects 

provide a way of estimating variation in disease risk between areas that is not otherwise 

captured by known risk factors (e.g. age, sex, socioeconomic status, etc.).  
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Why Bayesian?  

Bayesian statistics takes its name from the English clergyman Thomas Bayes (1702-1761), 

although the key concepts were also contemporaneously established by Laplace and 

embedded in the general view of ‘inverse probability’ at that time (259). It is an approach to 

data analysis that focuses on relating observed and unknown quantities using conditional 

probabilities, which are measures of the probability of an event given that another event has 

occurred.  

 

In a Bayesian model (Box B.1), an unknown parameter is represented using a distribution 

rather than a single point estimate (260). The model parameters have distributions and are 

probabilistic (e.g. parameters representing coefficients associated with covariates in a 

regression model might be given a Normal distribution (Box B.2)). These distributions are 

known as prior distributions. These prior distributions can be considered as representing the 

uncertainty about the parameter before the data are seen. The parameters in the prior 

distributions (e.g. the mean and variance of the prior on a regression coefficient) can also 

have distributions which are known as hyperprior distributions. Again, these distributions 

also represent uncertainty about our knowledge of these values.  

 

The combination of the prior information and the data results in a posterior distribution. The 

posterior distribution can be thought of as a probability distribution on the values of an 

unknown parameter that combines prior knowledge about the parameter and the observed 

data. The Bayesian model thus consists of parameters related to one another in the form of a 

hierarchy. The complex nature of spatial data can be captured using this hierarchical structure 

(4, 87). 

 

Box B.1 Bayesian model  

 

Given Bayes’ theorem (261), 

𝑷(𝑨|𝑩) ∝ 𝑷(𝑨)𝑷(𝑩|𝑨) 

The posterior distribution (𝑷(𝑨|𝑩)) is proportional to the prior distribution for parameters 

(𝑷(𝑨)) multiplied by the data-based distribution given parameters (also known as the 

likelihood, 𝑷(𝑩|𝑨)). 

◦  Posterior estimates (model output) are a combination of the prior information and the data.  

◦  Parameters in the model are assigned prior distributions.   

◦  A prior distribution is the probability distribution that represents the uncertainty about the 

parameter before the current data are examined.   

◦  Parameters in the prior distribution can also be assigned distributions.   

◦  Parameters in the prior distribution (called ‘hyperparameters’) can also be assigned 

distributions.  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Random effects are generally included in these models. Typically, a random effect is 

specified as being normally distributed, whereby a few areas are allowed to have a disease 

incidence much lower than expected based on these risk factors, a few areas much higher, but 

most are close to expected (following a bell curve). For spatial data, we assume that sites 

closer to each other are more similar, so we can use information from neighbouring sites to 

obtain better estimates of disease risk. Hence, when we fit a spatially-correlated random 

effect, the variation at a particular site is normally distributed relative to the mean of its 

neighbours. These random effects thus relate disease risk estimates to neighbouring 

estimates, producing a ‘smoothing’ effect across the area of interest.  

 

Box B.2 Normal distribution  

 

A distribution contains information on every possible observation and its associated 

probability. For instance, a Normal distribution is a continuous distribution that is “bell-

shaped”, at which data are most likely to be distributed around the mean and are less likely to 

be farther away from the mean.  
 

A Normal distribution is often specified in terms of its mean (𝜇) and variance (𝜎2) and can 

be written in the form of Normal(𝜇, 𝜎2). A parameter can be assigned a Normal distribution 

with mean 0 and variance 100 which can be denoted as Parameter~Normal(0,100).  
 

Alternatively, instead of specifying the values (0,100), uncertainty about these parameters 

can also be described probabilistically. For example, instead of specifying ‘100’ for the 

variance, the prior distribution could be written as Normal(𝜇, 𝜎0
2), and 𝜇 set to 0 while 𝜎0

2 is 

described by another probability distribution. Here 𝜎0
2 is termed a hyperparameter and the 

distribution on 𝜎0
2 a hyperprior distribution. 

 

 

There are many reasons why the Bayesian approach is a useful framework for disease 

mapping. Firstly, Bayesian smoothing methods produce robust and reliable estimation of 

health outcomes of interest in a small area, even when based on small sample sizes (258). 

Within these small areas, the sample sizes are sometimes too small to yield estimates with 

adequate precision and reliability. Bayesian smoothing techniques improve the estimation by 

using information from neighbouring areas.  

 

Secondly, the use of prior distributions (usually based on existing knowledge or expert 

opinion) in disease mapping models helps strengthen inferences  about the true value of the 

parameter and ensures that all relevant information is included (262). These can be 

‘uninformative’ (e.g. set to be Normally distributed with a mean of zero and a very large 

variance) or ‘informative’ if there is other information about the effect of this risk factor 

(given the other risk factors in the model). Thirdly, the Bayesian approach allows for 

quantification of the uncertainty related to the health estimates from the posterior 

distributions (67, 263). Spatial uncertainties added to the resulting risk maps depict local 
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details of the spatial variation of the risk and provide valuable information for policy makers 

to make decisions about thresholds and public health (246, 260, 264). 

 

Lastly, direct probabilistic statements can be made about the underlying and unobserved 

parameters of interest using their posterior probability distributions. In disease mapping, it 

might be of interest to make probability statements about areas of high risk for a disease. For 

instance, computing and mapping probabilities that the risk in an area exceeds certain 

thresholds can be done using the posterior probability distributions (101). This probability of 

exceedance can then be used to decide whether an area should be classified as having excess 

risk of a disease (102). It is straightforward to make these kind of statements in a Bayesian 

context, since they are directly obtained from the corresponding posterior distribution.  

 

Box B.3 Selecting regional scale  

 

Important questions to consider when deciding on an appropriate area scale to conduct the 

analysis include:  
 

1. Is there a risk of patient confidentiality being compromised?  

2. Are population data available at the same scale as disease occurrences?  

3. Will boundaries change over time? If so, what options are possible for keeping your data 

consistent?   

4. Is there a digital boundary file available?   

5. Will areas have a practical and relevant interpretation?   

6. How does the size of the areas compare relative to the spatial pattern of the variation? If 

there is a lot of variation in an environmental effect within areas, this will limit the scope to 

measure the effect.   

7. How many areas will there be? This affects computational time.   

8. Are some areas likely to have zero population? This is likely to cause difficulties in 

modelling and estimation, e.g., zero denominator causes difficulties when using a Poisson 

distribution.   

9. What scale have other similar studies used?   

10. What spatial scale is available for covariate data? If spatial variation that takes fixed 

effects into account is of interest, it is not necessary to have a spatial scale finer than the 

available covariate data.   
 

 

 

Data  

Often health data are only available with location data supplied as a small area (known as 

areal data), rather than a street address geocoded to a latitude/longitude point. Determining 

the most appropriate region size to use involves several considerations (Box B.3). This article 
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focuses on the application of disease mapping methods for areal data aggregated over small 

areas and omits the discussion of other forms of spatial data such as geostatistical and point 

patterns data. As an alternative, health outcome data may also be analysed at the individual 

level, while incorporating spatial information at any geographical scale such as a point or an 

area.  

 

The data described in the Atlas (154) focused on Queensland cancer data aggregated to the 

SLA level, which was the smallest area with annual population data available. However, 

consistent with most administrative regions, the areas are of varying sizes, and larger areas 

tend to dominate the map. An alternative approach is to aggregate disease data with 

continuous coordinate information to regular grid cells; see Li et al. (196, 265) and Kang et 

al. (10). Such an approach allows modelling of disease data at a fine spatial scale, 

independent of administrative boundaries while preserving patient confidentiality. Using this 

approach, the spatial scale can be manipulated to a practically, geographically and 

computationally sensible scale. It does, however, require individual level geocoded data, 

which may not be accessible due to confidentiality concerns. Spatial data may also be 

available at various geographical scales and hence there is a need to combine information 

from multiple sources (see Gotway and Young (266) for further details). 

 

Box B.4 Data required to produce incidence estimates  

 

Given a disease of interest, the information required to produce incidence estimates includes: 
  

◦  Number of disease cases among people within a certain time period for each small area  

◦  Estimated population counts by age group, sex, year and small area of residence − this is 

used as the denominator for calculating rates and for age-standardisation  

◦  Geographical boundaries − this is used to compute the adjacency matrix required for spatial 

smoothing   

◦  Optional: any desired small area level covariates (if available) such as rurality and 

socioeconomic status   
 

 

Cramb et al. (154) mapped two health outcome measures in the Atlas, namely the incidence 

estimates and the relative survival estimates (discussed in the following Section). Incidence is 

a measure of the risk of developing a disease within a specified period of time. Relative 

survival is the standard measure of survival from a disease in population-based disease 

survival studies (267). Each of these outcomes require specific input data (refer to Boxes B.4 

and B.5).  

 

Although other estimates of disease, such as prevalence, are beyond the scope of this article,  

Bayesian mapping approaches are described in Congdon (268). 
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Box B.5 Data required to produce survival estimates  

 

To produce relative survival estimates of a disease of interest, the input data required include: 
  

◦  From the patients with the disease of interest (if not available for each individual then 

aggregated over each small area, any covariates and follow-up time intervals):  

   − The observed number of deaths (from any cause) within a certain time period  

   − Person-time at risk (the length of time between diagnosis and either death or censoring)   

◦  General population mortality data used to calculate the expected number of deaths, which 

represents deaths due to causes other than the disease of interest for each small area, sex and 

broad age group  

◦  Geographical boundaries − this is used to compute the adjacency matrix required for spatial 

smoothing  

◦  Optional: individual or area-level covariates, including age, tumour stage, or area rurality 

and socioeconomic status 
 

 

 

Bayesian Spatial Statistical Models  

A response variable is the event studied and expected to vary whenever the independent 

variable is altered. It is also known as a dependent variable. Here we consider two response 

variables, namely the number of cancers diagnosed (incidence model) and the number of 

deaths within x years of a cancer diagnosis (relative survival model). Because both response 

distributions are counts, and the disease is less common, a Poisson distribution is used to 

model them (Box B.6).  

 

Box B.6 Probability distributions used in epidemiology  

 

For common diseases, the Binomial distribution models the number of disease occurrences in 

a sample size n from a population size N. The Binomial distribution is also commonly used in 

the analysis of disease prevalence data and case-control studies (269). 
 

◦  When the disease is rare or less common (i.e., the probability of a disease is small), the 

Poisson distribution is used as an approximation to a Binomial distribution (270, 271). A 

Poisson distribution expresses the probability of a given number of events occurring in a fixed 

interval of time and/or space. 
 

◦  For over-dispersed count distributions (where the data admit more variability than expected 

under the assumed distribution), a Negative Binomial distribution may be appropriate (272). 
 

◦  For empirical data that show more zeroes than would be expected, zero-inflated models may 

be employed (272). 
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The resulting estimate for the incidence of a disease is known as the standardised incidence 

ratio or SIR, which is an estimate of relative risk within each area based on the population 

size, that compares the observed incidence against the expected incidence. The SIR explains 

if the observed incidence in a particular area is higher or lower than the average across all 

areas included, given the age and sex distribution and population size of the area.  

 

The relative survival of a disease is modelled using an excess mortality model that contrasts 

the mortality in the background population with disease mortality. The survival model results 

in an excess hazard, which is called the relative excess risk (RER). The RER informs the 

relative survival of a disease within each area, by reporting the risk of death within a certain 

number of years of diagnosis after adjusting for broad age groups, compared to the average.  

 

Small-area disease data typically exhibit spatial correlation due to spatial structure in the 

unknown risk factors. The presence of spatial correlation can be caused by a combination of 

socio-demographic clustering and environmental effects (273). Traditional regression models 

assume independence of random effects and so ignore the potential presence of spatial 

correlation. This may lead to false conclusions regarding covariate effects and unstable risk 

estimates (274).  

 

The spatial correlation can be accounted for using spatial smoothing techniques, by 

estimating the effect of interest at a location using the effect values at nearby locations (275). 

Spatial smoothing approaches based on neighbourhood dependence are widely employed in 

disease mapping where areas with a common boundary are treated as neighbours (276). By 

accounting for the spatial correlation, model inference, prediction and estimation can be 

improved (143). The effect of the arbitrary geographical boundaries can also be reduced via 

spatial smoothing. Other smoothing techniques include interpolation methods, kernel 

regression, kriging and partition methods (61, 277).  

 

Figure B.1 The representation of neighbourhood structure of area i. 

 

Note: Based on the Rook method, neighbours for area i include areas 2, 4, 6 and 8, while the Queen method 

defines regions 1 − 8 as neighbours of area i. 
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Two popular ways of defining a neighbourhood structure for the modelling of spatial 

correlation are the Queen definition and the Rook definition. The Rook method defines that 

two areas are considered neighbours if they share a common boundary whereas the Queen 

method specifies that two areas are termed neighbours if they share a common boundary or 

vertex. Following Earnest et al. (38), the illustration of these two methods for defining a 

neighbourhood structure is given in Figure B.1. Such information can be used to calculate the 

average of spatially correlated random effects of neighbours for area i.  

  

The following Bayesian spatial models take the spatial correlation into account by 

incorporating spatially correlated random effects. Both the incidence and relative survival 

models assume a Poisson distribution for the observed data and contain spatial and 

unstructured (non-spatial) random effects. The well-known Bayesian BYM model (81) is 

widely used to model disease incidence (Box B.7) as it has desirable properties for disease 

mapping, particularly in modelling the geographical dependence between neighbouring areas 

(87). The incidence model can also be used to model mortality.  

 
 

Box B.7 The incidence model  

 

Given a set of n areas, the model for area i (i = 1,, n) can be written as follows:  
 

Observed counts in area i ∼ Poisson(expected counts of area i × SIR of area i) 
 

log(SIR of area i) = intercept term + coefficient × predictor variable vector for area i + 

spatial random effect of area i + unstructured random effect of area i.  
 

Apply stratum-specific reference rates to the populations of interest.  
 

The ratio of two indirectly standardised rates is called the SIR. 
 

 

With regard to relative survival, the excess mortality can be modelled via a GLM, using exact 

survival times (121). The excess mortality is the mortality that is attributable to a particular 

disease. It is a measure of the deaths which occur over and above those that would be 

expected for a given population. Such a Bayesian relative survival model (Box B.8) has been 

used by Fairley et al. (120) and Cramb et al. (154). See Boxes 2.14 and 2.18 for the statistical 

models for incidence and relative survival, respectively. 

 

In both models, the spatial random effect is the component that accounts for spatial 

correlation between neighbouring areas. The unstructured or non-spatial random effect 

accounts for the unexplained variation in the model.  

 

In a Bayesian analysis, it is assumed that all parameters arise from a probability distribution. 

As such, distributions representing the likely spread of values are placed on each parameter. 

Commonly, a vague Normal distribution such as one with mean 0 and variance 1.0 × 106or 

Normal(0, 1.0 × 106) is used for the intercept or coefficients of predictor terms. Vague priors 
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refer to distributions with high spread, such as a Normal distribution with extremely large 

variance. Such a distribution gives similar prior value over a large range of parameter values.  

 

Box B.8 The relative survival model  

 

The model can be written as below, where for area i, follow-up interval j, and age group k,  

Number of deaths𝑖𝑗𝑘~Poisson(expected number of deaths𝑖𝑗𝑘)  

log(expected number of deaths𝑖𝑗𝑘 − expected number of deaths due to other causes𝑖𝑗𝑘)

= log(person time at risk𝑖𝑗𝑘) + intercept𝑗 +  coefficient𝑘

× predictor variable vector + spatial random effect of area𝑖 

+ unstructured random effect of area𝑖  
 

 

Generally, the unstructured (non-spatial) random effects and the spatial random effects are 

both assigned a prior distribution with additional hyperparameters (Box B.9). To allow for 

spatial correlation, commonly an intrinsic conditional autoregressive (CAR) distribution is 

used. The CAR prior models the spatial dependence in a study region by effectively 

borrowing information from neighbouring areas than from distant areas and smoothing local 

rates toward local, neighbouring values. The method provides some shrinkage and spatial 

smoothing of the raw relative risk estimates (69). This results in a more stable estimate of the 

pattern of the underlying disease risk than that provided by the raw estimates. Consequently, 

the variance in the associated estimates is reduced and the spatial effect of geographical 

differences can be identified. This prior has been widely employed in disease mapping to 

study the geographical variation of disease risk (278-280), and works particularly well to 

smooth out variability not relevant to the underlying risk (281).  

 

Box B.9 Prior distributions for the random effects  

 

Unstructured 

The unstructured random effects are assumed to follow a Normal distribution with mean zero 

and a hyperparameter for variance.  

Unstructured random effect of area i ∼ Normal(0, variance hyperparameter).  
 

Spatial 

The spatial random effects are assumed to follow a CAR prior (81) with some 

hyperparameters, as follows:  

Spatial random effect of area i ∼ Normal (average of spatial effects of neighbours of area i, 

variance hyperparameter / number of neighbours of area i).
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Commonly, both of the precision (inverse of the variance) hyperparameters are assigned a 

Gamma distribution. Alternative hyperprior distributions may include placing either a 

Uniform or half-Normal distribution on the standard deviation (square root of the variance) 

(54).  

 

The prior distributions used for the parameters may influence the results and therefore should 

be carefully considered and compared. There are two issues to consider when deciding on a 

prior distribution (54): (a) what information is going into the prior distribution; and (b) the 

impact on the resulting posterior distribution. A sensitivity analysis  (282) can be used to 

investigate the dependence of the posterior distribution on prior distributions by comparing 

posterior inferences under different reasonable choices of prior distribution. A literature 

review is usually helpful to determine the prior distributions being used in similar Bayesian 

models.  

 

 

Computation  

The complexity of these models mean they cannot be solved analytically. Instead, some 

method of approximation is required. One approach is to use Markov chain Monte Carlo 

(MCMC) methods, which sample from the posterior distribution. A variety of software is 

available to conduct MCMC, including BUGS (Bayesian inference Using Gibbs Sampling), 

JAGS (Just Another Gibbs Sampler), Stan and BACC (Bayesian Analysis, Computation & 

Communication). WinBUGS is one of the most popular options (134) that provides great 

flexibility in Bayesian modelling, has a simple programming language (283) and interfaces 

with multiple statistical software, including R, Matlab, Stata and SAS. See Additional 

Information B.1 for the WinBUGS code for the discussed models. Some useful resources to 

help learn WinBUGS include Lawson et al. (277), Lunn et al. (284), Ntzoufras (206), Lykou 

and Ntzoufras (285), and Spiegelhalter (286).  

  

Bayesian computation for the above models can also be conducted in R (287), by calling the 

inla program and adopting the integrated nested Laplace approximation (INLA) approach 

proposed by Rue et al. (288). The INLA approach performs Bayesian inference for spatial 

models and is able to return accurate parameter estimates in a much shorter time than 

MCMC. The use of R-INLA for statistical analysis in various disciplines is increasingly 

common in recent years, including disease mapping. Additional Information B.3 provides R-

INLA code to perform computation for the discussed models. Some useful resources for 

getting started with R-INLA include Schrödle and Held (289, 290), Blangiardo et al. (291), 

and Rue et al. (292). 

  

To incorporate neighbourhood dependence into the Bayesian models, a neighbourhood 

matrix is required. The neighbourhood matrix contains a list of neighbours for an area. Freely 

available software programs that will calculate a neighbourhood matrix include GeoDa (293), 

the spdep R package (294), or within WinBUGS.  
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Making Decisions  

Perhaps the greatest advantage of Bayesian methods is the diversity of options available to 

assist in the decision making process. Communicating results in a way that is easily 

interpretable and accurate enables informed decisions to be made. Here we outline some of 

the ways modelled estimates can be used and visualized.  

 

The SIR and RER estimates produced using the methods described in the previous sections 

are two commonly seen measures of disease risk. The estimates produced by Bayesian 

models give great flexibility in reporting results, including comparison of the risk estimates 

against the average, ranking estimates, and/or examining the uncertainty around the 

estimates.  

 

Ranking of disease estimates ensures that public health investigations or interventions are 

prioritized correctly (4). In the Bayesian context, the posterior distributions of health outcome 

measures (such as SIR and RER) allow for the calculation of rank estimates of each area (47, 

256). For instance, Athens et al. (295) use five health outcome measures to obtain county 

rank estimates for a composite health outcome measure. The five health outcome measures 

are converted to a score, and then ranked by weighted means. The ranking of health outcomes 

is useful for representing health performance of each area which can then be used to inform 

health decision making.  

 

Moreover, comparison between two areas can be made easily in the Bayesian framework. 

Outside of Bayesian methods, it may be difficult and problematic to conduct a large number 

of pairwise comparisons for all areas using post-hoc tests (296). The problem is that by 

conducting so many comparisons, the probability of finding some of the differences 

statistically significant by chance alone increases. The Bayesian context eliminates this issue 

with pairwise comparisons of the posterior distributions.  

 

Bayesian methods produce measures of uncertainty for each modelled estimate. The 

uncertainty attached to the spatial distribution of risk values across the study region can be 

known as spatial uncertainty (246). It is valuable to visualize spatial uncertainty as it provides 

local details of the spatial variation of the risk, as well as an input to resource allocation, 

management and policy strategies. Several methods have been proposed to describe the 

uncertainty attached to the smoothed rates, including mapping the 95% credible interval  of 

the posterior distribution of smoothed rates (260) and the probability that the risk in each 

small area exceeds a certain threshold (102).  

 

Under the Bayesian paradigm, there is great flexibility in communicating and visualising 

results. Options include maps or graphs of the smoothed estimates, their associated 

uncertainty, or the probabilities of being above/below certain values. Mapping of disease 

rates or outcomes facilitates comparison of spatial patterns in disease rates between males 

and females, between age groups, between races, over time, and motivates comparison with 

patterns of potential causes (297). By comparing disease rates of different areas, clues to 
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possible causation may be found and this serves as a starting point for further investigation.  

 

The purpose of this Section is to showcase various visualisations that can be produced using 

the outputs obtained from Bayesian modelling techniques and the associated interpretation. 

This is demonstrated on a common cancer with poor survival: male lung cancer in 

Queensland. Figures B.2 to B.7 present an array of maps or plots based on the results from 

modelled survival (RER of death within 5 years of diagnosis) for each SLA that are useful for 

communicating the results of statistical analysis via the Bayesian paradigm. The RER 

expresses the risk of cancer patients dying from their cancer within five years of diagnosis in 

an SLA compared to the Queensland average (RER = 1), and therefore should not be directly 

compared between two SLAs. The figures were produced using R software, package 

maptools.  

 

Figure B.2 maps the posterior distribution of SLA-level RER and provides a picture of the 

spatial pattern of the underlying risk. Figure B.3 depicts the uncertainty associated with the 

Bayesian estimates of RER by mapping the 95th percentile range of the 10,000 values 

sampled from the posterior distribution of RER for each SLA. A graph showing the ranked 

RER with the associated 95% credible interval for each SLA is provided in Figure B.4. 

Horizontal box plots of the RER estimates by socioeconomic status and rurality are provided 

in Figure B.5 to provide additional information about where the extent of variability across 

the Queensland state. Figure B.6 maps the SLAs having a 90% probability of RER being 

higher than the Queensland average (RER = 1) (highlighted in red) and the SLAs having at 

least a 90% probability of RER being lower than the Queensland average (RER = 1) 

(highlighted in blue). Figure B.7(a) depicts the probability of the SLAs having RER 

exceeding 1 and Figure B.7(b) depicts the probability of the SLAs having RER exceeding 

1.2. 
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Figure B.2 Bayesian smoothed estimate of RER 

 

 
Notes: To show the spatial pattern of the underlying risk, the median of the posterior distribution of SLA-level 

RER is mapped. An inset of South-East Queensland is provided for greater detail as this region has a large number 

of SLAs. Thematic categories are based on fixed breaks method.  
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Figure B.3 Uncertainty of Bayesian smoothed estimate of RER 

 

 

Notes: This map depicts the uncertainty associated with the estimates of relative risk. The 95
th 

percentile range 

(97.5 minus the 2.5
 
percentile) of the 10,000 values sampled from the posterior distribution of RER for each SLA 

is mapped here. An inset of South-East Queensland is provided for greater detail as this region has a large number 

of SLAs. Thematic categories are based on quintiles.  

 
 

Figure B.4 Uncertainty of Bayesian smoothed estimate of RER 

 

 
Notes: The 95% credible interval (97.5

 
− 2.5

 
percentile) of the 10,000 values sampled from the posterior 

distribution of RER for each SLA is plotted here. This plot shows how much reliance can be placed on the 

estimates. The black line is the median RER for each SLA. The blue vertical lines are the 95% credible intervals, 

and indicate the amount of uncertainty associated with each estimate. The red line shows the Queensland average 

(set to 1).  
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Figure B.5 Distribution of smoothed RER estimates according to (a) Socioeconomic 

status (b) Rurality 

(a) 

 
 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: The distributional plots reflect the general patterns in the smoothed RER estimates across the area-based 

categories of socioeconomic status and rurality. These plots show the proportion of RER estimates that are above 

or below the Queensland average (vertical red line) within each of the area-based categories. The plots only 

present the range of point estimates, and so do not take the amount of uncertainty associated with each SLA-

specific estimate into account.  
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Figure B.6 Using posterior probabilities to classify risk 

 
Notes: In the Bayesian paradigm, the SLAs highlighted in red have a 90% probability of RER being higher than 

the Queensland average (RER = 1). This means that the lower 10th percentile of the posterior distribution of RER 

exceeds 1. The SLAs highlighted in blue express at least a 90% probability of RER being lower than the 

Queensland average (RER = 1). This means that the upper 90th percentile of the posterior distribution of RER is 

less than 1. The density plots show the posterior distribution of RER for four randomly chosen SLAs where the 

x-axis is the RER values. The two density plots on the left show that there is more than 90% chance for the RER 

to be higher than 1. The two density plots on the right show that there is more than 90% chance for the RER to be 

lower than 1. The percentage of low risk or high risk for each SLA is also given in each density plot. An inset of 

South-East Queensland is provided for greater detail as this region has a large number of SLAs.  

 

Discussion  

In this article we have outlined the benefits of Bayesian models for both analysis and 

visualization. The public health arena regularly makes practical decisions affecting people’s 

health. To facilitate decisions, it is vital that the analysis is conducted appropriately, and 

results are communicated effectively.  

 

Bayesian methods are increasingly being used to analyse routinely collected data. The 

Bayesian framework is now the tool of choice in many applied statistical areas, including 

disease mapping (298). In small area studies, Bayesian methods often have better model fit 

than non-Bayesian smoothing methods (47). Greater flexibility in distributional assumptions 

is possible under Bayesian methods than in traditional regression models (14).  
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Figure B.7 (a) Thematic map depicting the probability of RER exceeding 1, (b) 

Thematic map depicting the probability of RER exceeding 1.2 

 
(a) 

 
(b) 

Notes: The threshold 1.2 was chosen to reflect high risk as it lies in the fifth quintile. Four SLAs are chosen to 

demonstrate how the probabilities change when the thresholds change. An inset of South-East Queensland is 

provided for greater detail as this region has a large number of SLAs. 
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Whether to standardise response rates depends on the study objectives. For the cancer atlas, it 

was desirable to remove the influence of age, so that differences were not due to different age 

structures between areas. For incidence, we used the standardised incidence ratio (SIR), 

which adjusts for the area-specific age and sex structure. An alternative method to 

standardisation for dealing with confounders is via the use of regression models (299). These 

can be particularly useful when multiple confounders need to be controlled for 

simultaneously. For relative survival, we included age in the regression equation to remove 

its influence on the results. However, if the purpose of a study is to identify where the highest 

rates of disease are, such as for service provision, then there is no need to standardise (or 

otherwise adjust) the incidence rates. This is because the cause of the variation (whether sex, 

age or other factors), is inconsequential.  

 

Visualising disease patterns through maps remains an effective method to convey a large 

amount of information in an engaging way. Few modern day visualisations include 

uncertainty measures, yet this greatly assists in decision making. Online, interactive 

visualisations can dynamically link maps (e.g. Figure B.2 showing the smoothed Bayesian 

RER), with plots of the uncertainty (e.g. Figure B.3 showing the 95% credible interval for 

each area). Selecting an area would then highlight the corresponding region in both plots, 

providing much greater information to the user.  

 

There are limitations associated with using routinely collected data. Determining the direction 

of causation may not be possible. Often there is a lag time between exposure and disease 

detection, and patients may move during this time. Bayesian methods also have certain 

limitations, including greater computational time if using Markov chain Monte Carlo 

approaches, and requiring sensitivity analyses to ensure priors are not exerting undue effect. 

With regard to computation using R-INLA, models must be expressible in the linear model 

format and there are restrictions on the types of prior distributions that can be assumed.  

 

However, we believe the advantages outlined in this article outweigh any limitations. 

Routinely collected data exist to enable disease monitoring and control. Appropriate analyses 

convert this data into information, which once communicated, enables action. Bayesian 

methods not only enable appropriate analyses to be performed, they also provide greater 

flexibility in visual communications.  

 

Can descriptive studies really influence government policy? The disparities identified in the 

cancer atlas resulted in the Queensland government including a specific objective aimed at 

reducing the geographic disparities in cancer outcomes in their Strategic Directions (300). 

Results were also used in lobbying to increase the amount of financial assistance the 

government provided to remote patients to offset travel and accommodation costs while 

obtaining treatment away from home, and the amount provided was subsequently increased. 

Our experience is that routinely collected data, when appropriately analysed and 

communicated, facilitate appropriate government action.  

 

We hope this article will enable greater understanding, and potentially uptake, of Bayesian 
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methods in disease mapping, along with available options for communicating estimates and 

their uncertainty.  

 

Additional Information  

B.1 WinBUGS code  

WinBUGS code for the incidence model  

Model 
{ 

for (i in 1 : N) { 

# Likelihood 

O[i] ~ dpois(mu[i]) 

Opred[i] ~ dpois(mu[i]) 

log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i] 

# Area-specific relative risk (for maps) 

RR[i] <- exp(alpha + u[i] + v[i]) 

# Prior distribution for the uncorrelated heterogeneity 

v[i] ~ dnorm(0, tauv) 

} 

# CAR prior distribution for spatial random effects 

u[1 : N] ~ car.normal(adj[], weights[], num[], tauu) 

for(k in 1:sumNumNeigh) { 

weights[k] <- 1 

} 

# Other priors: 

alpha ~ dflat() 

# Hyperpriors on precisions  

tauu ~ dgamma(0.1, 0.1) 

tauv ~ dgamma(0.001, 0.001) 

sigmau <- sqrt(1 / tauu) 

sigmav <- sqrt(1 / tauv) 

#Standard deviations 

sdv <- sd(v[]) #marginal SD of heterogeneity 

sdu <- sd(u[]) #marginal SD of clustering 

} 

 

WinBUGS code for the relative survival model  

 
Model 
{ 

# Likelihood 

for (i in 1 : datarows) { 

d[i]  ~ dpois(mu[i]) 

mu[i]<-d_star[i] + excessd[i] 

log(excessd[i]) <-  log(y[i])+ alpha[RiskYear[i]] + beta[1]*agegp2[i] 

+ beta[2]*agegp3[i]+ u[slaNo[i]] + v[slaNo[i]] 
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for (j in 1:N_RiskYear){ 

alpha[j] ~ dnorm (0, 0.001) 

} 

} 

# CAR prior for spatial effects 

u[1:Nsla] ~ car.normal(adj[], weights[], num[], tauu) 

for (k in 1:sumNumNeigh) {weights[k] <- 1 } 

for (i in 1:Nsla) { 

# Prior distribution for the uncorrelated heterogeneity 

v[i] ~ dnorm(0, tauv) 

logRER[i]<-u[i]+v[i] 

RER[i]<-exp(logRER[i]) 

}  

# Other priors 

tauu ~ dgamma(0.5, 0.001) 

tauv ~ dgamma(0.5, 0.001) 

varv <- 1/tauv 

varu_con <-1/tauu 

varu_marg<-sd(u[])*sd(u[]) 

} 
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B.2 R-INLA code  

R-INLA code for the incidence model  

Assume that data are available for a set of areas as {yi,ei,x1i,x2i} for i = 1,...,n, where yi is a 

count, ei is an expected count, and x1i and x2i are two predictors/covariates. These data should 

be read into R as vectors and can be held in a list. In the code below, n represents the number 

of areas, obs represents disease count, expe represents expected count, cov1 and cov2 

represent the covariates, u represents the spatial random effects, and v represents the 

unstructured (non-spatial) random effects.  

 

u=seq(1:n) 

v=seq(1:n) 

data.incid = list(obs=obs, expe=expe, cov1=cov1, cov2=cov2, u=u, v=v) 

formula1 = obs ~ cov1 + cov2 

 + f(u, model="besag", graph="queensland.graph", param=c(0.1, 0.1)) 

 + f(v, model="iid", param=c(0.001, 0.001)) 

result1 = inla(formula1, family="poisson", data=data.incid, 

control.compute=list(dic=TRUE, cpo=TRUE, mlik=TRUE), E=expe) 

summary(result1) 

 

R-INLA code for the relative survival model  

In the code below, n represents the number of areas, d represents the number of deaths (dijk), 

d_star represents the expected number of deaths due to causes other than the disease of 

interest (d∗ijk), y represents the person-time at risk (yijk), cov1 and cov2 represent the 

covariates, u represents the spatial random effects, and v represents the unstructured (non-

spatial) random effects.  

u=seq(1:n) 

v=seq(1:n) 
data.surv = list(d=d, d_star=d_star, y=y, cov1=cov1, cov2=cov2, u=u, v=v) 

formula2 = d ~ offset(d_star) + cov1 + cov2 

 + f(u, model="besag", graph="queensland.graph", param=c(0.5, 0.001)) 

 + f(v, model="iid", param=c(0.5, 0.001)) 

result2 = inla(formula2, family="poisson", data=data.surv, 

   control.compute=list(dic=TRUE, cpo=TRUE, mlik=TRUE), E=y) 

summary(result2) 
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Appendix C Computational software  
 

Free resources 
 

BUGS (includes WinBUGS and OpenBUGS), available from: http://www.mrc-

bsu.cam.ac.uk/software/bugs/ Enables running of Bayesian models using (predominately) 

Gibbs sampling. The built-in GeoBUGS can be used to generate neighbourhood matrices. 

 

GeoDa   Easy-to-use software featuring various smoothing and regression models, as well as 

generation of various types of neighbourhood matrices. Available from: 

https://geodacenter.asu.edu/software/downloads.  

JAGS   Has a cross-platform engine for the BUGS language, but also allows users to write 

their own distributions, functions etc.  Available from: http://mcmc-jags.sourceforge.net/.  

The National Cancer Institute has developed several resources, all of which are freely 

available at gis.cancer.gov/tools/nci_tools.html including: 

 

o Plug-ins for using with ESRI ArcGIS ArcMap include, among others: 

o ColorTool (Assists in using ColorBrewer colours for chloropleth maps) 

o Head-Bang (Smooths data within ArcMap using the Head-Bang 

smoothing algorithms. These are semi-related to the locally-weighted 

median discussed in Section 2.4.1.) 

 

o Linked MicroMaps (a graphing program written in Java, allowing easy 

comparison of statistics across regions and time. Multiple variables can be 

examined interactively) 

 

o HD*Calc (statistical software for evaluating health disparities. Originally 

developed for cancer data, so can be used as an extension of SEER*Stat 

software, but also with any dataset. Generates tables and/or graphs containing 

calculated summary measures of disparities.) 

 

o SaTScan (aims to detect clusters in spatial, temporal., or spatio-temporal data 

using scan statistics and evaluate their significance.) www.satscan.org/ 

 

NIMBLE http://r-nimble.org/  Can be used as an extension of the BUGS language to write 

flexible statistical models, or can also be used without BUGS models as a way to compile 

simple code similar in form to R into C++, which is then compiled and loaded into R. 

 

PySAL  www.pysal.org An open source library of spatial analysis functions written in 

Python. 
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R R is statistical software, available from: https://www.r-project.org/  A myriad of 

packages enable spatial analysis within R, including methods appropriate for point- and area-

level data. Useful packages for areal data could include: 

o bdsmatrix: routines for block diagonal symmetric matrices 

o CARBayes: spatial GLMMs for areal data 

o CARBayesST: spatio-temporal GLMMs for areal data 

o coda: output analysis and diagnostics for MCMC 

o colorspace: maps between a variety of colour spaces (e.g. RGB, HSV, 

CIELAB)  

o DCluster: detection of spatial clusters of diseases 

o epitools: for epidemiology data and graphics 

o fields: curve, surface and function fitting with an emphasis on splines, spatial 

data and spatial statistics 

o gdistance: calculates distances and routes on geographic grids 

o glmmBUGS: pass spatial models to WinBUGS 

o geoR: geostatistical analysis  

o geosphere: computes distances and related measures for geocoordinates 

o geospacom: generates distance matrices from shape files and plots data on 

maps 

o gwrr: fits geographically weighted regression models with diagnostic tools 

o INLA (available from www.r-inla.org/, not CRAN): Integrated Nested 

Laplace Approximation 

o INLABMA: Bayesian model averaging with INLA 

o lmtest: testing linear regression models 

o locfit: local regression, likelihood and density estimation 

o maps: draw geographical maps 

o maptools: tools for reading and handling spatial objects 

o Matrix: sparse and dense matrix classes and methods 

o MCMCpack: functions to perform Bayesian inference using posterior 

simulation for a number of statistical models 

o McSpatial: nonparametric spatial data analysis 

o mgcv: mixed generalised additive model with multiple smoothing parameter 

estimation 

o nlme: linear and nonlinear mixed effects models 

o pixmap: import, export and other functions of bitmapped images 

o plotGoogleMaps: plot spatial or spatio-temporal data over Google maps 

o PReMiuM: for profile regression (a Dirichlet process Bayesian clustering 

model) 

o raster: enables many GIS methods 

o R2BayesX: interfaces R with BayesX (performs Bayesian inference in  

structured additive regression models 

o R2WinBUGS: interfaces R with WinBUGS 

o RandomFields: simulation and analysis of Gaussian fields, as well as extreme 

value random fields 

o RColorBrewer: provides colour schemes for maps as described at 

colorbrewer2.org  
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o RPyGeo: ArcGIS processing in R via Python 

o sandwich: robust covariance matrix estimators 

o shapefiles: read and write ESRI shapefiles 

o sp: classes and methods for spatial data 

o spacetime: classes and methods for spatio-temporal data 

o spaMM: spatial GLMMs  

o sparr: estimates kernel-smoothed relative risk and subsequent inference 

o SparseM: Basic linear algebra for sparse matrices 

o spatcounts: Spatial count regression via customised MCMC 

o SpatialEpi: cluster detection and disease mapping functions, including 

Bayesian cluster detection 

o spatsurv: Bayesian inference for parametric proportional hazards spatial 

survival models 

o spBayes: Univariate and multivariate spatio-temporal models with MCMC 

o spBayesSurv: Bayesian modelling and analysis of spatially correlated survival 

data 

o spdep: useful functions to create spatial weights matrix objects from polygon 

contiguities, and various tests for global and spatial correlation  

o spgrass6: interfaces R with GRASS 6+ GIS 

o sphet: Estimation of spatial autoregressive models with and without 

heteroskedastic innovations 

o tmap: thematic maps 

 

Stan  Can be used for Bayesian modelling with either MCMC or approximate Bayesian 

inference, or penalised MLE. Available from: http://mc-stan.org/. 

 

Commercial software  
 

ArcGIS  Comprehensive GIS software from ESRI. Further details at: www.arcgis.com/. 

 

BoundarySeer Statistical analysis software from BioMedware that enables detection and 

analysis of geographic boundaries. Further details at: 

www.biomedware.com/?module=Page&sID=boundaryseer-overview   

 

ClusterSeer Statistical analysis software from BioMedware that enables detection and 

analysis of event clusters. Further details at: 

www.biomedware.com/?module=Page&sID=clusterseer-overview  

 

MapInfo  Comprehensive GIS software from Pitney Bowes. Further details at: 

www.mapinfo.com. 

 

MLwiN Statistical software for fitting multilevel (hierarchical) models via either 

maximum likelihood estimation or MCMC methods. Further details at: 

www.bristol.ac.uk/cmm/software/mlwin/  
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SAS  (Statistical Analysis System). This is a software suite developed by SAS Institute for 

advanced data analysis and management. Further details at: www.sas.com. The SAS-ESRI 

bridge enables ArcGIS functionality. Other useful commands include: 

o Proc mapimport – converts a shapefile to a dataset 

o Proc gmap – for creating maps (includes choropleth maps)  

o WinBUGSio – A user-written macro for interfacing SAS with WinBUGS 

 

Stata Comprehensive software for data analysis and statistical analyses developed by 

StataCorp. Further details at: www.stata.com/. User-written programs for spatial analyses 

include: 

o geocode3 – Using Google geocoding can either geocode addresses into 

coordinates or reverse geocode coordinates into addresses to examine the 

quality of geocoding 

o shp2dta – imports .shp data to stata formats 

o spatgsa – calculates global spatial autocorrelation measures 

o spatlsa – calculates local spatial autocorrelation measures 

o spatwmat – generates a matrix of weights 

o spmap – generates a large variety of thematic maps 

o spgrid – generates two-dimensional grids 

o spkde – uses datasets generated by spgrid to perform a variety of kernel 

estimators 

o traveltime3 – uses Google Distancematrix to retrieve distance and travel time 

between two locations (either geocoded coordinates or addresses) 

o winbugs – A suite of commands starting with “wb” that allow Stata to 

interface with WinBUGS. 

 

SpaceStat Statistical analysis software from BioMedware that enables visualisation, 

analysis, modelling and exploration of spatiotemporal data. Further details at: 

www.biomedware.com/?module=Page&sID=spacestat-features  
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