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Overview 
 

The popularity of Bayesian disease mapping is increasing, as is the variety of available models. The 

most commonly used prior for enabling spatial correlation within a Bayesian model is the intrinsic 

conditional autoregressive (CAR) distribution. This approach allows for local smoothing of estimates 

over neighbouring areas, but it assumes a common variance for the smoothing term over the whole 

region.  This is applicable if there is a smooth spatial trend over the region, which may not be valid for 

large, spatially heterogeneous areas. The aim of this report is to critically review alternative Bayesian 

models, especially those that enable local variation in the smoothing. 

The motivation for this study is the development of a national cancer atlas for Australia. Our focus is 

therefore on the performance on small-area cancer incidence models that allow for substantive 

differences in area-level variables, in particular area-specific population, demographics, land area and 

number of cases. For example, remote areas of Australia typically have relatively low population 

counts, few or no cancer cases in certain years, and very large land areas, compared with urban 

areas. Moreover, the number of cancer cases are heavily dependent on the size and structure of the 

population, which can vary substantially within and between areas.  

The study commenced with a literature search to identify Bayesian models that have been commonly 

used in disease mapping. Two broad types of models were identified, namely ‘global’ spatial 

smoothing models that have a common spatial smoothing term across the region, and ‘local’ spatial 

smoothing models that allow for differential smoothing depending on neighbourhood characteristics. 

The specific models that were identified are listed below. 

 

Global spatial smoothing: 

• Intrinsic CAR/BYM model (Besag et al., 1991) 

• Proper CAR model (Besag, 1974) 

• Leroux model (Leroux et al., 2000) 

• Geostatistical model (Clements et al., 2006) 

• Global spline models (Lang & Brezger, 2004) 

 

Local spatial smoothing 

• CAR dissimilarity models (Lee & Mitchell, 2012) 

• Localised autocorrelation (Lee & Mitchell, 2013) 

• Locally adaptive model (Lee & Sarran, 2015) 

• Hidden Potts model (Green & Richardson, 2002) 

• Spatial partition model (Knorr-Held & Raßer, 2000, Denison & Holmes, 2001) 

• Weighted sum of spatial priors (Lawson & Clark, 2002) 

• Leroux scale mixture model (Congdon, 2017) 

• Local spline models (Goicoa et al., 2012, Perperoglou & Eilers, 2010) 

• Skew-elliptical areal spatial models (Nathoo & Ghosh, 2013). 

 

Selected models were then applied to simulated Australian incidence data for liver, lung and all 

invasive cancers. These cancers were chosen to reflect different patterns of spatial heterogeneity and 

overall levels of incidence. 

 

Criteria used to differentiate between models were the plausibility of estimates (range of standardised 

incidence ratios, posterior probabilities and the width of the credible intervals); model goodness of fit 

(Watanabe-Akaike information criterion (WAIC), Moran’s I on the residuals along with visually 

checking residual spatial patterns, and the Deviance information criterion (DIC)). Finally, the 

computational time and practical feasibility of implementing the models was assessed.  

 

No one model performed brilliantly across every type of cancer, and it was surprisingly difficult to 

balance the need for smoothing against obtaining sufficient variation to capture genuine differences. 

The greatest differences in modelled estimates were found for the simulated liver cancer data, 

representing a rarer cancer. The three best performing models overall were identified as being the P-
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spline (radial), Leroux, and localised autocorrelation (G=5). Recommendations are therefore to 

identify data characteristics (the numbers and likely disparities in neighbouring areas, here considered 

to be likely if there is evidence of a trend across socioeconomic quintiles) and choose the most 

appropriate model out of these top three models. 
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Introduction 
 

There are many advantages to using a Bayesian approach when mapping disease. These include 

enabling direct probabilistic statements to be made, such as the probability that an area has an 

increased disease risk (Kang et al., 2016). The use of prior distributions enables estimates to be 

reliable and robust (i.e. well-defined and stable), even when there are few cases in an area (Kang et 

al., 2016).  

 

Many Bayesian spatial models have been proposed, most of which vary with respect to the 

representation of the spatial prior. One of the outstanding difficulties for a user is choosing the type of 

prior that will appropriately characterise the spatial nature of the data of interest. Often choices are 

made on the ease of implementation, which is part of the appeal of using a conditional autoregressive 

(CAR) prior. 

Spatial priors are designed to perform some smoothing over areas.  Some smoothing is desirable as 

it reduces uncertainty of estimates in the model, and it provides insight into the underlying spatial 

trend which may otherwise be obscured by noise and the effects of other variables.  Undersmoothing 

is adverse because it diminishes the above benefits, but oversmoothing is also undesirable because it 

can conceal genuine deviations from the underlying smooth spatial surface, which may signify areas 

that are of clinical interest and importance.  However, achieving a satisfactory level of smoothing is a 

difficult task, and it forms part of the criteria for comparing models, in particular, the plausibility of 

estimates. 

 

Here, we investigate the performance of the most popular Bayesian spatial models identified through 

searching the literature. We examine their commonalities and differences and contrast their 

performance on three simulated datasets. 

 

Our aim was to identify appropriate models to apply to the Australian Cancer Atlas. This will examine 

the incidence of and survival from around 20 different cancer types, with greatly varying numbers 

(some extremely sparse) and patterns, across more than 2,100 small areas. These areas have large 

differences in population size, demographic structure, land area size and shape. This diversity 

increases the challenges of appropriately cancer estimates. 
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Methods 
 

Search strategy 
 

Our aim was to identify popular Bayesian models for disease mapping. 

 

Databases including Web of Science, PubMed, ScienceDirect and Google Scholar were searched 

electronically in August 2017. The same search terms were used across all databases and were: 

Bayesian disease AND (map OR mapping) AND (autoregressive OR CAR OR smoothing). Details on 

the search strategy are included in Table 1. Due to the very large number of items returned through 

Google Scholar and Science Direct, items were sorted by relevance and the first 200 items scanned 

from those databases. Titles and abstracts were screened first and the resulting papers identified 

were evaluated through reading the full text. Of the 15 primary references relating to the specific 

models considered in this report, 11 were identified from the search strategy directly, and of the 

remaining four, three were found indirectly from this literature while the other one was a textbook.  

 

Focused clustering models (Diggle, 1990) aim to determine the pattern of events near an exposure 

source (such as a nuclear power station) so are not applicable to the Australian Cancer Atlas and 

were excluded. Methods more suited to exploratory analyses, rather than a formal model (such as 

geographically weighted regression (Brunsdon et al., 1996)) were also not considered (Wheeler, 

2014). 

 

 

Table 1: The detailed search strategy 

Database Keywords Restrictions Items returned 

Google Scholar Bayesian disease AND (map OR 

mapping) AND (autoregressive 

OR CAR OR smoothing) 

Exclude patents and 

citations; sort by 

relevance 

~38200 

(Only first 200 

scanned) 

Web of Science Bayesian disease AND (map OR 

mapping) AND (autoregressive 

OR CAR OR smoothing) 

Searching in Topic 

(default) with default 

settings 

206 

Science Direct Bayesian disease AND (map OR 

mapping) AND (autoregressive 

OR CAR OR smoothing) 

Advanced search, 

searching in all fields; 

rest default settings 

(sorted by relevance) 

3,550 

(Only first 200 

scanned) 

Pubmed Bayesian disease AND (map OR 

mapping) AND (autoregressive 

OR CAR OR smoothing) 

Default settings 69 

 

 

Data simulation 
 

Popular models identified in the literature were applied to simulated Australian incidence data for ages 

15+ years aggregated over 2005-2014 for 3 types of cancer: male liver (rare, strong socioeconomic 

gradient, so disparities expected between neighbouring regions), male lung (more common, but still a 

strong socioeconomic gradient) and female all invasive cancers (comparatively high numbers with a 

smaller socioeconomic influence due to opposing socioeconomic gradients between cancer types). 

The areas used were statistical areas 2 (SA2s) based on the 2011 Australian Statistical Geography 

Standard (ASGS) boundaries (Australian Bureau of Statistics, 2011). After excluding some areas with 

no/nominal resident populations, the number of areas was 2,153.  The median population of the 

http://www.sciencedirect.com.ezp01.library.qut.edu.au/
https://www-ncbi-nlm-nih-gov.ezp01.library.qut.edu.au/pubmed?product=WOS&search_mode=GeneralSearch
https://ccq.sharepoint.com/sites/atlas/_layouts/15/guestaccess.aspx
https://scholar.google.com.au/
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included SA2s was 9,055 (range: 3 to 50,251). Land area size varied from 0.8 to 520,000km2, with a 

median of 16km2. 

Details on calculating the simulated data are available in Appendix F. Briefly, these are based on the 

broad socioeconomic-remoteness patterns observed in cancer data in Queensland, by each type of 

cancer and sex, with additional random adjustment of the numbers. The median number of cases by 

SA2 was 2 liver cancer cases (range 0-19), 25 lung cancer cases (range: 0-163) and 210 all invasive 

cancer cases (range: 0-1012). 

 

Model comparison 
 

Models were compared based on the following criteria: 

• Plausibility of estimates (Appendices A and G): 

o Standardised incidence ratios (SIRs) 

o Posterior probabilities (PPs) and  

o Credible intervals (CIs)  

• Model goodness of fit (Appendices B and H): 

o Watanabe-Akaike information criterion (WAIC) 

o Moran’s I on residuals 

o Model residuals (values and spatial patterns) 

o Deviance information criterion (DIC) 

• Computational time and feasibility (Appendix B) 

o Software available for easy implementation. 

 

In addition, convergence of the SIR estimates was examined and convergence results based on the 

Geweke convergence diagnostic (Geweke, 1992) are summarised in Appendix C. The differences in 

neighbourhood matrices between models are summarised in Appendix D. Code for implementing the 

models is available in Appendix E, and further methodological details are available in Appendix F. 

 

The plausibility of estimates considered the CI width (unreasonably large CIs suggested the estimate 

was not well-defined; while very precise estimates suggested uncertainty was not appropriately 

included. It additionally considered the amount of smoothing of the median posterior SI in comparison 

to the raw SIRs. 

 

To compare how models perform on the simulated data, four model goodness of fit measures are 

considered. DIC (Spiegelhalter et al., 2002)and WAIC (Watanabe, 2010) are both useful for 

comparing the predictive accuracy between models. Although DIC is a commonly used measure to 

compare Bayesian models, WAIC has several advantages over DIC, including that it closely 

approximates Bayesian cross-validation, it uses the entire posterior distribution and it is invariant to 

parameterisation (Vehtari et al., 2017). For both these measures, smaller values indicate a better 

fitting model. 

 

Residuals were also calculated and Moran’s I (Moran 1950) applied to these to determine if spatial 

autocorrelation was present after fitting the models. As values of Moran’s I close to 0 indicate very low 

or no spatial autocorrelation, here we consider values above 0.2 to be suggestive of some positive 

spatial autocorrelation. The closer Moran’s I is to zero, the better the model  accounts for spatial 

autocorrelation (Anderson & Ryan, 2017). 
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Bayesian spatial models 
 
In this section, we provide a summary of popular Bayesian spatial models that were identified as 

potentially applicable to map small-area cancer incidence. The following three-stage hierarchical 

model is “a natural model for disease mapping” and has been widely used (Best et al., 2005): 

 

Stage 1: 𝑌𝑖~ Poisson(𝐸𝑖𝑒
𝜇𝑖)   for 𝑖 = 1, … , 𝑁 areas 

Stage 2: 𝜇𝑖 =  𝛼 + 𝒙𝑖
T𝜷 + 𝑅𝑖 

Stage 3: 𝛼 ~ 𝑝(∙ |𝜽𝛼) 

𝜷 ~ 𝑝(∙ |𝜽𝛽) 

𝑅𝑖 ~ 𝑝(∙ |𝜽𝑅) 

 
The first stage is the likelihood model. The Poisson distribution is used because {𝑌1, … , 𝑌𝑁} are count 

data for a comparatively uncommon disease.  𝐸𝑖 represents the expected cancer counts and are 

commonly defined using internal standardisation of risk (see Appendix F for calculation details).   

 

The second stage is an expression for the log-relative risk 𝜇𝑖.  This is often expressed as a regression 

equation and typically includes an overall fixed effect (intercept, denoted 𝛼), covariate effects (𝜷) 

where 𝒙𝑖 denotes a vector of covariates relating to area 𝑖, and spatial random effect(s) (𝑅𝑖). As shown 

below, the ‘spatial’ random effects can be formed from multiple components, some of which may 

allow for extra-Poisson variation (Besag et al., 1991). 

 

The third stage consists of the prior distributions for each of the unknown parameters, which, in the 

absence of external information, are usually specified as weakly informative, such as Gaussian 

distributions with zero mean and some large variance.  The random effects may be assumed to follow 

a CAR (or alternative) prior to account for spatial smoothing (Best et al., 2005, Besag et al., 1991).  If 

the parameters 𝜽𝛼, 𝜽𝛽 or 𝜽𝑅 are unknown, then the hyperpriors represent a fourth stage of the 

hierarchy. 

 

Global spatial smoothing 

 
Global spatial smoothing means the same smoothing parameters are applied consistently across the 

entire region (Lee & Mitchell, 2012). Although the global CAR-based models are easy to implement in 

a range of software, disadvantages of global models include the potential for oversmoothing, as 

discontinuities between adjacent areas are smoothed over. Oversmoothing is defined as obscuring 

too much of the underlying geographic patterns, although what is ‘too much’ may depend on the 

context and the aim of the analysis.  

 

Intrinsic CAR and BYM 
The intrinsic CAR (ICAR) model specifies the following set of conditional distributions for the spatial 

random effect parameter: 

𝑅𝑖 = 𝑆𝑖 
 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
1

∑ 𝑤𝑖𝑗𝑗
∑ 𝑤𝑖𝑗𝑠𝑗

𝑗

,  
𝜎𝑠

2

∑ 𝑤𝑖𝑗𝑗
) 

 

or in matrix notation 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩({𝐃−1𝐖𝒔}𝑖,  𝜎𝑠
2{𝐃−1}𝑖𝑖) 

 

where 𝑤𝑖𝑗 is the element of a spatial weights matrix 𝐖 corresponding to row 𝑖 and column 𝑗 (Besag et 

al., 1991, Besag, 1974, Lee, 2011, Best et al., 2005), and 𝐃 is a diagonal matrix with elements 
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diag{∑ 𝑤𝑖𝑗𝑗 }. 𝐖 determines the spatial proximity between the random effects, and it is most commonly 

defined as a binary, first-order, adjacency matrix, whereby 

 

𝑤𝑖𝑗 = {
1 if areas 𝑖 and 𝑗 are adjacent
0 otherwise

 

 

This model implies that the conditional expectation of 𝑆𝑖 is equal to the mean of the random effects at 

neighbouring locations. 

 

The 𝑆𝑖 can be regarded as structured spatial random effects.  If 𝑅𝑖 = 𝑆𝑖 + 𝑈𝑖, so that unstructured 

spatial random effects 𝑈𝑖~𝑁(0, 𝜎𝑈
2 ) are also included, the resulting model is referred to as the 

convolution model, or the BYM model in honour of Besag et al. (1991). However, the two separate 

random effects components cannot be individually identified – only their sum is identifiable (Eberly & 

Carlin, 2000). Note that for all CAR-based models, the strength of the partial autocorrelation depends 

on the number of neighbouring areas rather than on any underlying relationship (Lee & Mitchell, 

2013). 

 

 

Proper CAR 
The full conditionals for the ICAR prior are proper, but the joint distribution is improper since the 

precision matrix is singular.  The impropriety of the ICAR prior can be overcome by redefining the 

precision matrix 

 

𝐓 =
1

𝜎𝑠
2

(𝐃 − 𝐖) 

 

to 

 

𝐓 =
1

𝜎𝑠
2

(𝐃 − 𝜌𝐖) 

 

such that the full conditionals are: 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
𝜌

∑ 𝑤𝑖𝑗𝑗
∑ 𝑤𝑖𝑗𝑠𝑗

𝑗

,  
𝜎𝑠

2

∑ 𝑤𝑖𝑗𝑗
) 

 

with the constraint  |𝜌| < 1, and using the terminology in Banerjee et al. (2003),  𝜌 represents the 

expected proportional ‘reaction’ of 𝑆𝑖 to 
∑ 𝑤𝑖𝑗𝑠𝑗𝑗

∑ 𝑤𝑖𝑗𝑗
. This ensures the covariance matrix 𝐁−1 is positive 

definite and ensures 𝑺 has a proper joint distribution (Kandhasamy & Ghosh, 2017). This is the proper 

CAR prior, but it may have certain disadvantages, including potentially limiting the breadth of the 

posterior spatial pattern (Banerjee et al., 2003). Also, 𝜌 will likely need to be very close to 1 for there 

to be a reasonable amount of spatial association (Banerjee et al., 2003). 

 

Leroux CAR model 
Another variation of the BYM model was proposed by Leroux et al. (2000), 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
𝜌 ∑ 𝑤𝑖𝑗𝑠𝑗

𝑁
𝑗=1 + (1 − 𝜌)𝜇0

𝜌 ∑ 𝑤𝑖𝑗𝑗 + 1 − 𝜌
,

𝜎𝑠
2

𝜌 ∑ 𝑤𝑖𝑗𝑗 + 1 − 𝜌
) 

 

which only requires a single set of random effects (Lee, 2011). This avoids the difficulties in 

identifiability, and also selection of hyperpriors (given that in the BYM model the 𝑆𝑖 variance is 

conditional on neighbouring areas, while the 𝑈𝑖 has a marginal variance term) (Riebler et al., 2016).  
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The precision matrix can be expressed as 

 

𝐓 =
1

𝜎𝑠
2

[𝜌(𝐃 − 𝐖) + (1 − 𝜌)𝐈]. 

 

This mixture representation consists of correlated smoothing of the neighbouring random effects 

(weighted by 𝜌) as well as uncorrelated smoothing to a global mean 𝜇0 (weighted by (1 − 𝜌)) (Lee & 

Mitchell, 2012). Thus 𝑆𝑖 has a conditional expectation based on a weighted average of both the 

independent random effects and the spatially structured random effects. The ICAR prior is therefore a 

limiting case of both the proper CAR and Leroux CAR models when 𝜌 is set to 1. 

 

Geostatistical model 
Here, the residual spatial structure is modelled as a Gaussian process using a geostatistical design 

(Clements et al., 2006). Because this model incorporates distance, counts are assumed to be in the 

centroid of an area. 

 

𝑅𝑖 ~ 𝒩(𝑆𝑖, 𝜎2) 

𝑆𝑖 = exp(−(𝜆𝑑𝑖𝑗)𝑘) ,   λ > 0 

 

where 𝜆 controls the rate of decay, 𝑘 is the “degree of spatial smoothing”, and 𝑑𝑖𝑗 is the distance 

between points (e.g. centroids of areas) 𝑖 and 𝑗 (Clements et al., 2006). This expression is the 

exponential decay function with the addition of the power 𝑘. Rather than fix decay parameter 𝜆 a 

priori, a hyperprior is specified as a fourth stage: 

  

𝜆 ~ Uniform(0.1, 6) 

 

The justification for the bounds 0.1 and 6 are thus: 

 

“…upper and lower bounds set at 0.1 and 6.0, which gave possible values for spatial correlation of 

0.99–0.55 with a separating distance of 0.1 decimal degrees (the minimum distance between 

observed data points) and possible values for spatial correlation of 0.00–0.55 with a separating 

distance of 6.0 decimal degrees (the maximum distance between observed data points), assuming 

k = 1.0” (Clements et al., 2006) 

 

Alternative functions are possible, including the disc model (Richardson, 1992) (a linear decrease with 

increasing distance, where two discs of common radius are centred on centroids, and the correlation 

is proportional to the disc intersection area), or combining two parametric functions to obtain different 

shapes of decrease, such as the Matern class (Best et al., 2005). Note often limited information is 

available to guide the choice of functional form, or correlation parameters, especially as complexity 

increases (Best et al., 2005). It is vital that the choice of correlation function (and hyperpriors) gives 

near zero correlation at distances within the study region, to avoid nonidentifiability of the mean and 

correlation parameters (Best et al., 2005). Finally, these models can be computationally expensive 

due to inversion of the covariance matrix at each iteration (Best et al., 2005). 

 

For the Australian cancer data sets, two adjustments were made to this model to provide a better fit.  

First, the priors for 𝜆 and 𝑘 were changed according to the possible values of spatial correlation 

observed given different combinations of 𝜆, 𝑘, and distances 𝑑𝑖𝑗.  This exploratory analysis suggested 

using  

 

𝜆 ~ Uniform(0.01,1) 

𝑘 ~ Uniform(0.1, 20). 
 

To allow for further flexibility, 𝜆 and 𝑘 were replaced by one of {𝜆1, … , 𝜆5} and {𝑘1, … , 𝑘5} respectively 

according to the remoteness of the area (major city, inner regional, outer regional, remote, and very 

remote) to allow the degree of smoothing to vary between the five levels of remoteness.  Second, to 
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make this model computationally feasible, the distance matrix {𝑑}𝑖𝑗 was modified by imposing a 

remoteness-specific radius of influence {𝑟1, … , 𝑟5} on each area, such that areas beyond this threshold 

are not considered neighbours.  These radii are {50, 100, 200, 400, 800} kilometres respectively.  This 

induces a Markov random field (MRF) structure which should have only a negligible effect on 

parameter estimation while greatly increasing computational efficiency.  Some remote and very 

remote areas are relatively close to major city and inner regional areas, which can lead to some areas 

having more than 1000 neighbouring SA2s, thereby drastically reducing any computational gains.  

Therefore, the imposed MRF was further modified to exclude major city areas as neighbours of 

remote areas, and to exclude both major city and inner regional areas as neighbours of very remote 

areas.  This is achieved by setting the distances to these excluded areas to infinity.  The result of 

these adjustments leads to 

 

{𝐒}𝑖𝑗 = {
exp(−(𝜆𝑧𝑖

𝑑𝑖𝑗)𝑘𝑧𝑖 ) if 𝑑𝑖𝑗 ≤ 𝑟𝑧𝑖
 

0 𝑑𝑖𝑗 > 𝑟𝑧𝑖

 

𝑆𝑖 = 𝑓(𝐒) =
1

𝑁𝑖
∑ 𝐒𝑖𝑗

𝑁𝑟

𝑗=1

 

 

where 𝑁𝑖 is the number of areas within a radius of 𝑟𝑧𝑖
 units from the centroid of area 𝑖 (including area 𝑖), 

𝑁𝑟 = max
𝑖

{𝑁𝑖}, and 𝑧𝑖 represents the degree of remoteness for area 𝑖, where 𝑧𝑖 = 1 corresponds to an 

area in a major city.   

 

Global spline models  
The spline model also assumes that the incidence cases (counts) are all located at the centroid of 

each area (Goicoa et al., 2012).  

 

There are two main methods: smoothing splines and P-splines (MacNab, 2007). Smoothing splines 

are penalised splines which have knots on all data points. P-splines allow for a smaller number of 

knots, and are commonly formulated as a penalised spline regression under a ‘difference penalty’ 

based on the coefficients of adjacent B-spline bases or other spline bases (MacNab, 2007). 

 

The “interaction” (dependency or correlation) between areas 𝑖 and 𝑗 can be modelled by a two-

dimensional smooth surface (Goicoa et al., 2012). First, define the longitude and latitude pairs 

representing the centroid of each area, denoted (𝑐1𝑖 , 𝑐2𝑖).   

 

𝑅𝑖 = 𝑓(𝑐1𝑖, 𝑐2𝑖) 

 

where the smooth function 𝑓(⋅) is expressed as 

 

𝑓(𝑐1𝑖, 𝑐2𝑖) = 𝜃1𝐵1(𝑐1𝑖, 𝑐2𝑖) + ⋯ + 𝜃𝑘𝐵𝑘(𝑐1𝑖, 𝑐2𝑖) 

 

which is estimated using P-splines with B-spline bases 𝐵1 , … , 𝐵𝑘, 𝜃1, … , 𝜃𝑘 are unknown coefficients 

which are penalised to control for “wiggliness” through a penalty matrix, and 𝑘 depdence on the 

number of knots and the degree of the B-spline bases.   

 

Define 𝒄1 = (𝑐11, … , 𝑐1𝑁)T and 𝒄2 = (𝑐21, … , 𝑐2𝑁)T and univariate B-spline bases𝐁1 =

{𝐵11(𝒄1), … , 𝐵1𝑘1
(𝒄1)} and 𝐁2 = {𝐵21(𝒄2), … , 𝐵2𝑘2

(c2)}.  The bivariate B-spline basis is then constructed 

as the row-wise Kronecker product (denoted by ⊠) of the marginal B-spline bases: 

 

𝐁 = 𝐁2 ⊠ 𝐁1

 = (𝐁2⨂𝟏𝑘1

T ) ⊙ (𝟏𝑘2

T ⨂𝐁1).
 

 

The basis 𝐁 is of dimension 𝑁 × 𝑘 where 𝑘 = 𝑘1𝑘2, the symbols ⨂ and ⊙ represent the Kronecker 

product and “element-wise” matrix product respectively, and 𝟏𝑘1
 and 𝟏𝑘2

 are column vectors of ones 

of length 𝑘1 and 𝑘2” (Goicoa et al., 2012). 
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Overall this model provides a relatively smooth surface, as the covariance structure is impacted by 

long distance effects that influence the smoothing, which contrasts to the covariance structure of the 

CAR model where a region’s mean depends on the mean of its neighbours (Goicoa et al., 2012). 

 

The formulation of the P-spline model using the row-wise Kronecker product, or tensor product, is 

better suited to data which lie on a regular grid, or at least have similar distances between the 

centroids.  An alternative formulation (Ruppert et al., 2003) is to define the B-spline bases in terms of 

the distances, 

 

𝑧𝑖𝑘 = exp (−
𝑑𝑖𝑘

Δ
) (1 +

𝑑𝑖𝑘

Δ
) 

 

where 𝑑𝑖𝑘 is the distance between the 𝑖th area and the 𝑘th knot, and Δ is a number used to normalise 

the distances so that the values of 𝐁 are more evenly spread between the lower and upper limits.  

The knots were evenly spaced at intervals of 5 degrees of latitude and longitude, as shown in the 

figure below.  Knots which were too distant from the centroids of SA2 areas were subsequently 

dropped.  A total of 47 knots were retained for modelling.  Based on these knots, Δ was set to 500. 

 

 
 

This version of the P-spline uses a radial basis function which achieves rotational invariance (Ruppert 

et al., 2003). 

 

Local spatial smoothing 
 

CAR dissimilarity model 

Lee and Mitchell (2012) based this model on the Leroux CAR prior, with 𝜌 set to be 0.99 to ensure 

strong global spatial smoothing which could then be altered locally through estimating {𝑤𝑖𝑗|𝑖~𝑗}. 

Here, the elements in W are modelled, so the partial autocorrelations can be reduced between certain 

adjacent random effects. This approach can have binary or non-binary elements in W.  

The similarity between areas is determined by including non-negative dissimilarity metrics in the 

model, i.e. 𝒛𝒊𝒋 = (𝑧𝑖𝑗1, … , 𝑧𝑖𝑗𝑞) where 𝑧𝑖𝑗𝑘 = |𝑧𝑖𝑘 − 𝑧𝑗𝑘|/𝜎𝑘 and 𝜎𝑘 is the standard deviation of |𝑧𝑖𝑘 − 𝑧𝑗𝑘| 

over all pairs of contiguous areas.  
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The set of {𝑤𝑖𝑗} are determined using regression parameters 𝜶 = (𝛼1, … , 𝛼𝑞). These can be based 

on social or physical factors. Physical boundaries (e.g. river/railway line, or the distance between 

centroids) can be used if the aim is to explain the spatial pattern in the response and include 

covariates in the model. Alternatively, covariate information can be used to construct the dissimilarity 

metrics if the aim is to identify the locations of any boundaries (Lee, 2017). 
 

𝑅𝑖 = 𝑆𝑖 

𝑆𝑖|𝒔\𝑖  ~ 𝒩 (
0.99 ∑ 𝑤𝑖𝑗(𝜶)𝑠𝑗

𝑁
𝑗=1 + 0.01𝜇0

0.99 ∑ 𝑤𝑖𝑗(𝜶)𝑗 + 0.01
,

𝜎𝑠
2

0.99 ∑ 𝑤𝑖𝑗𝑗 (𝜶) + 0.01
) 

 

 

The binary formulation: 

 

𝑤𝑖𝑗 = {
1 if exp (− ∑ 𝑧𝑖𝑗𝑘α𝑘

𝑞

𝑘=1
) ≥ 0.5 and 𝑖~𝑗

0 otherwise

 

 

α𝑘~ Uniform(0, 𝑀𝑘)   for 𝑘 = 1, … , 𝑞 

 

The non-binary formulation (which does not allow identification of hard boundaries, but does allow for 

localised smoothing): 

 

𝑤𝑖𝑗(𝜶) = exp (− ∑ 𝑧𝑖𝑗𝑘α𝑘

𝑞

𝑘=1
) 

 

α𝑘~ Uniform(0,50)   for 𝑘 = 1, … , 𝑞 

 

Although this model can have covariates included, it appears as though there are advantages in 

excluding them so that the spatial structure is identical in both the risk surface and the random effects 

surface (Lee & Mitchell, 2012). 

 

Localised autocorrelation 
The spatially smooth random effects in this model are augmented with a piecewise constant intercept 

(cluster model). This allows for large jumps in the mean surface between adjacent areas if they are in 

different clusters. The approach by Lee and Sarran (2015) partitions the I areas into a maximum of G 

clusters, each with their own intercept term (𝜆1, … , 𝜆𝐺) and is given by: 

 

𝑅𝑖 = 𝑆𝑖 + 𝜆𝑍𝑖
 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
1

∑ 𝑤𝑖𝑗𝑗
∑ 𝑤𝑖𝑗𝑠𝑗

𝑗

,  
𝜎𝑠

2

∑ 𝑤𝑖𝑗𝑗
) 

 

𝜆𝑔~Uniform(𝜆𝑔−1, 𝜆𝑔+1)      for 𝑔 = 1, … , 𝐺 

 

𝑓(𝑍𝑖) =
exp (−𝛿(𝑍𝑖 − 𝐺∗)2)

∑ exp(−𝛿(𝑟 − 𝐺∗)2)𝐺
𝑟=1

 

 

𝛿~Uniform(1, 𝑀) 
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where 𝑓(𝑍𝑖) denotes a shrinkage prior on 𝑍𝑖 which penalises the values towards the middle intercept 

value so that the extremes of 1 or G may be empty. Label switching is prevented by ordering the 

cluster means (𝜆1, … , 𝜆𝐺) so that 𝜆1 < 𝜆2 <. . <  𝜆𝐺. The penalty term 𝛿(𝑍𝑖 − 𝐺∗)2 where 𝐺∗ =

(𝐺 + 1)/2  means that if 𝐺 is odd then each data point will be shrunk towards a single intercept 𝜆𝐺∗, 

but if even, there may be two different intercept terms used even if there is a spatially smooth residual 

structure. Lee and Sarran (2015) thus recommend setting 𝐺 to be a small odd number, such as 3 or 

5. Area 𝑖 is assigned to one of the 𝐺 intercepts by 𝑍𝑖 ∈ {1, … , 𝐺}, and there is no spatial smoothing 

occurring on the indicator vector 𝒁. 

 

The clustering is purely non-spatial, and it is the CAR prior on the 𝑆𝑖 term that accounts for spatial 

autocorrelation (Lee & Sarran, 2015).  

 

Locally adaptive model 
A similar approach to the above dissimilarity model, except that here the boundaries are not identified 

by the use of additional information and the modelled 𝑤𝑖𝑗 are binary only. Lee and Mitchell (2013) 

again based this on the Leroux CAR model (with 𝜇0 = 0): 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
𝜌 ∑ 𝑤𝑖𝑗𝑠𝑗

𝑁
𝑗=1

𝜌 ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 + 1 − 𝜌

,
𝜎𝑠

2

𝜌 ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 + 1 − 𝜌

) 

 

Here 𝜌 can be estimated in the model, or fixed at a specified value (Lee and Mitchell (2013) 

recommend 0.99). 

 

The spatial weights matrix starts out as the binary, first-order, adjacency matrix where 

 

𝑤𝑖𝑗 = {
1 if areas 𝑖 and 𝑗 are adjacent
0 otherwise

, 

 

but this matrix is updated at each iteration which allows the weights corresponding to neighbours to 

be estimated as either 1 or 0 (but 𝑤𝑖𝑗 is fixed at zero for non-neighbouring areas).  Lee and Mitchell 

(2013) recommend using INLA to make the computation more feasible.  Because only weights 

corresponding to neighbouring areas are estimated, this approach should be more computationally 

feasible than areal wombling (Lu et al., 2007) where all values in 𝐖 are estimated.  This approach 

“…allows the elements of 𝐖 to be estimated, but without treating them as individual random quantities 

in an extra level of the Bayesian hierarchical model” (Lee & Mitchell, 2013). It is therefore not ‘fully’ 

Bayesian. 

 

𝐖 is estimated as follows.  For adjacent areas 𝑖 and 𝑗: if the marginal 95% credible intervals of 𝑠𝑖 and 

𝑠𝑗 overlap, then set 𝑤𝑖𝑗 = 1; else set 𝑤𝑖𝑗 = 0.  For further details, refer to Lee and Mitchell (2013), who 

implemented this using INLA. 

 

Hidden Potts model 
This approach was proposed by Green and Richardson (2002) and is summarised by Best et al. 

(2005). The idea is to model the relative risk 𝑒𝜇𝑖, or more generally, the spatial random effect on the 

log scale, as a 𝐾-component mixture model, where each component represents a different risk 

category, and the allocation of each area to a component follows a spatially correlated process.  The 

number of components 𝐾 is considered unknown and estimated by the model. 

 

𝑅𝑖 = log (𝑆𝑧𝑖
) 

𝑆𝑘  ~ Gam(𝑎, 𝑏)     for 𝑘 = 1, … , 𝐾 

𝐾 ~ Uniform(1, 𝐾max) 

 

The Potts model is proposed as the allocation model.   

 

𝑝(𝒛 |𝜓, 𝐾) = exp(𝜓𝑈(𝑧) − 𝛿𝑘(𝜓)) 
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where 𝜓 > 0 is the interaction parameter to be estimated and 𝑈(𝑧) = ∑ 𝕀(𝑧𝑖 = 𝑧𝑗)𝑖~𝑗  is the number of 

like labelled pairs of neighbouring areas. 

 

Spatial partition model 
Closely related to the above Hidden Potts model are the spatial partition models (Knorr-Held & Raßer, 

2000, Denison & Holmes, 2001). These also have K non-overlapping clusters of areas, each with a 

constant relative risk, and K is unknown (Best et al., 2005).The key differences are in defining the 

clusters and the hyperprior specifications (Best et al., 2005). Both this model and the above hidden 

Potts model have been criticised for forcing discontinuities into a surface, and for assuming constant 

relative risk within a cluster (Lawson & Clark, 2002). 

 

Weighted sum of spatial priors 
The BYM model with its spatially structured component 𝑆𝑖 and its unstructured spatial component 𝑈𝑖 

was extended to be able to detect discontinuities by Lawson and Clark (2002).  

 

𝑅𝑖 = 𝑝
𝑖
𝑆

𝑖
+ (1 − 𝑝

𝑖
)𝑍𝑖 + 𝑈𝑖 

 

The Z component models abrupt discontinuities between areas. Although a range of options is 

possible, Lawson and Clark (2002) based this on the total absolute difference in risk between 

neighbouring areas, i.e. 

 

𝜋(𝑍1, … , 𝑍𝐼) ∝
1

√𝜆
exp (−

1

𝜆
∑ |𝑍𝑖 −

𝑖~𝑗

𝑍𝑗|) 

 

where 𝜆 acts as a constraining term. Note that if 𝑝𝑖 = 1, then the model reverts to the BYM model. 

Conversely, if  𝑝𝑖 = 0, then the model is entirely discontinuous. 

 

Leroux scale mixture model 
Congdon (2017) proposed using a scale mixture model within a Leroux prior, as follows: 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
𝜌 ∑ 𝜅𝑗𝑤𝑖𝑗𝑠𝑗

𝑁
𝑗=1

𝜌 ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 + 1 − 𝜌

,
𝜎𝑠

2

𝜅𝑖[𝜌 ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 + 1 − 𝜌]

) 

 

If 𝜌 = 0, this reduces to an unstructured iid scale mixture Student-t density. Small values of 𝜅𝑗  (<1) will 

indicate areas differ from their neighbours. The scale mixture is implemented by 𝜅𝑖~Gam(0.5ν, 0.5ν), 

where ν is a hyperparameter. 

 

The precision matrix has the following diagonal terms (Congdon, 2017): 

 

{𝐓}𝑖𝑖 =
1

𝜎𝑠
2 𝜅𝑖 [(1 − 𝜌) + 𝜌 ∑ 𝑤𝑖𝑗

𝑗≠𝑖
] 

 

and off-diagonal terms: 

 

{𝐓}𝑖𝑗 = −
1

𝜎𝑠
2 𝜌𝜅𝑖𝜅𝑗I(𝑖~𝑗) 
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Local spline model  
An extension to the global spline models described above that results in a less smooth surface was to 
incorporate unstructured random effects as in the penalised random individual dispersion effects 
(PRIDE) model, originally proposed by Perperoglou and Eilers (2010). 
 

𝑅𝑖 = 𝑓(𝑐1𝑖, 𝑐2𝑖) + 𝛾
𝑖
 

 

where 𝛾𝑖 is an area specific random effect, whose vector follows a multivariate normal distribution 

(Goicoa et al., 2012). This means that the covariance matrix captures the unstructured heterogeneity 

by containing an identity matrix multiplied by a variance component, in addition to the eigenvalues 

from the P-spline model component (Goicoa et al., 2012). 

 

Skew-elliptical areal spatial model 
Here  

𝑅𝑖 = 𝜂
𝑖

−
1
2(𝛿|𝑍𝑖| + 𝑆

𝑖
) 

 

where 𝛿|𝑍𝑖| is the skewing component where 𝑍𝑖 is a set of skewing variables each independently 

drawn from a standard normal distribution, 𝜂 provides the scale mixing and 𝑆𝑖 is from the CAR model, 

i.e. 

 

𝑆𝑖|𝒔\𝑖 ~ 𝒩 (
κ

∑ 𝑤𝑖𝑗𝑗
∑ 𝑤𝑖𝑗𝑠𝑗

𝑗

,  
𝜎𝑠

2

∑ 𝑤𝑖𝑗𝑗
) 

where κ is a spatial smoothing parameter (note that if it is set to 0 then the distribution corresponds to 

uncorrelated skew-t random effects) and other terms are defined as before.  

Two versions were proposed by Nathoo and Ghosh (2013). The first aims to ensure each 𝑅𝑖 has a 

skew-elliptical distribution, with the marginal distribution for each spatial effect belonging to the skew-t 

family of distributions. 

The second is a semiparametric version that uses an approximation to a Dirichlet process to allow for 

data-driven departures from the parametric version. This accommodates uncertainty in the mixing 

structure, and gives greater flexibility in the tail behaviour of marginal distributions (Nathoo & Ghosh, 

2013).  

 

Summary of models 
 

Of the models described above, we did not investigate further the localised form of splines, nor the 

proper CAR model. The disadvantages of the proper CAR formulation such as the potentially limited 

breadth of estimates have limited appeal for spatial modelling (Banerjee et al., 2003). The localised P-

spline model was not investigated because the SIR estimates produced by the global smoothing P-

spline models were already considerably less smooth than the BYM model (see Appendix A). 

Enabling additional variation therefore seemed unnecessary. Two formulations of the global P-spline 

model were implemented: the first uses a tensor product to define the basis, and the second uses a 

radial basis.  

In addition, the CAR dissimilarity model can be applied in a variety of forms. The weighting matrix can 

be binary or non-binary, and the dissimilarity measure can be based on distance, geographical 

features (such as railways or mountains), or covariate information. In this report, we examine both 

binary and non-binary forms of this model based on Socioeconomic Indexes for Areas (SEIFA) 

dissimilarity, and also residual dissimilarity. While we are unaware of any published work using 

residuals for dissimilarity, we felt that this is an intuitive extension of the CAR dissimilarity model 

through identifying areas that differ from their neighbours under the specified model parameters. 
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We therefore attempted to apply each of the models in Table 2 to the simulated data. The BYM model 

was the most commonly cited model, but was also published much earlier than other models. A 

variety of software packages was used to run these models (Table 2). 

 

Table 2: Citation counts and software used for attempted models 

  Citations  

Models investigated Authors Total  2017  2016  Software used 

Global spatial smoothing      

  BYM  Besag et al., 1991 1486 113 137 R (CARBayes) 

  Leroux  Leroux et al., 2000 14 7 4 R (CARBayes) 

  Geostatistical model  Clements et al., 2006 115 6 12 JAGS (R2jags) 

  P-spline (tensor) Lang & Brezger, 2004 302 34 22 JAGS (R2jags) 

  P-spline (radial) Ruppert et al. 2003 58 9 7  

Local spatial smoothing 
 

   
 

  CAR dissimilarity model  Lee & Mitchell, 2012 11 1 3 R (CARBayes) 

  Localised autocorrelation  Lee & Mitchell, 2013 16 3 4 R (CARBayes) 

  Locally adaptive model Lee & Sarran, 2015 8 6 2 R (INLA) 

  Hidden Potts model  Green & Richardson, 
2002 

136 9 12 JAGS* 

  Spatial partition model  Knorr-Held & Raßer, 
2000, Denison & 
Holmes, 2001 

119 
& 56 

5 & 0 8 & 3 R* 

  Weighted sum of spatial 
priors  

Lawson & Clark, 2002 50 3 7 WinBUGS 

  Leroux scale mixture model  Congdon, 2017 1 1 0 WinBUGS 

  Skew-elliptical areal spatial 
model  

Nathoo & Ghosh, 2013 5 2 0 WinBUGS* 

Notes:  Citation counts as at 21st Dec 2017 using Web of Science (all databases). 

*Model unable to run.  
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Results and Discussion 
 

A summary of the models (and variants) run, along with key properties from each of the criteria 

(plausibility of estimates, model goodness of fit, and computational time) are in Tables 3 and 4. 

Further details on these components are available in Appendices A to D.  

The small numbers for liver cancer means some smoothing is essential, yet it is expected that 

neighbouring areas will sometimes have genuine differences. Detecting these differences is 

problematic, and even many of the models designed to allow for local variation had results which 

were similar to that from the BYM and Leroux models, suggesting oversmoothing was occurring 

(Appendices A and G). Many of the models that obtained greater variation and less smoothing had 

excessive uncertainty around these estimates, such as the localised autocorrelation models 

(Appendix A). The appearance of maps differed quite substantially between models, whether 

examining the modelled SIRs or the posterior probabilities (PPs) and estimates for certain areas 

under different models could range from well below to well above the Australian average (Appendices 

A and G). 

 

Although the amount of smoothing did vary between models for lung cancer, estimates were much 

more similar between different models overall than for liver cancer (Appendices A and G). 

 

The amount of smoothing performed on all invasive cancers was surprising, given the high numbers. 

It is possible that the method of data simulation (see Appendix F) may have already somewhat 

smoothed the data, and resulted in less fluctuations in raw SIRs than would naturally be observed. 

For all invasive cancers, the raw SIRs ranged from 0.17 to 1.57, which would seem to not require 

much (if any) smoothing. 

 

The models considered were all from the literature, albeit with certain modifications. For instance, we 

are not aware of others using residuals to determine which areas are dissimilar. However, these do 

show which areas are fitting poorly in comparison to their neighbours, and as such, may differ from 

them. The residuals used in the residual dissimilarity models were obtained from running a Leroux 

model with rho unfixed. This had high values for the male lung and liver cancers (rho of 0.87 and 

0.93, respectively), and low values for female all invasive cancers (rho=0.04). Many alternatives are 

possible, including obtaining residuals from: a Leroux model where rho is fixed at 0.99, a BYM model, 

or a GLM model with no spatial structure incorporated. Determining the preferred form is currently 

being investigated. 

 

Other model modifications tended to be more minor, and these are reflected in the supplied code 

provided in Appendix E. Models generated using MCMC were simplest to manipulate afterwards. 

Although INLA has the capacity to generate samples which can be used to approximate MCMC 

iterations, these are less straightforward, especially when wanting to combine multiple model 

parameters. 

 

Table 3: Numeric summary of results across model criteria  
Mapped SIR DIC WAIC Moran's I 

on 
residuals 

Computation 
time (sec) Median (Range) 

Liver cancer, males 

BYM 0.95 (0.38,1.34)  14,511.3   7,432.6    0.047    420.8  

Leroux 0.95 (0.39,1.34)  14,523.9   7,429.1    0.047    309.5  

Geostatistical 0.94 (0.51,1.84)  14,646.9  7,331.3    0.204  76,772.8 

P-spline (tensor) 0.95 (0.13,1.87) 14,515.4  7,279.9   0.205 8,117.2 

P-spline (radial) 0.93 (0.34,1.97) 14,760.3 7,402.6   0.241 1,960.1 

SEIFA dissimilarity (binary) 0.94 (0.09,4.27)  14,360.3   7,354.9    0.042    8,462.3  

SEIFA dissimilarity (non-binary) 0.94 (0.16,3.62)  14,315.4   7,361.2    0.031    5,316.0  

Residual dissimilarity (binary) 0.86 (0.04,5.80)  13,162.8   6,779.9    0.091    8,650.5  
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Mapped SIR DIC WAIC Moran's I 

on 
residuals 

Computation 
time (sec) Median (Range) 

Residual dissimilarity (non-binary) 0.77 (0.13,5.41)  12,792.9   6,619.9    0.102    8,788.8  

Localised autocorrelation (G=3) 0.96 (0.00,1.71)  13,571.9   8,107.0    0.054    1,035.6  

Localised autocorrelation (G=5) 0.99 (0.00,1.61)  13,129.9   7,435.9    0.068    1,081.4  

Locally adaptive (rho unfixed) 0.95 (0.38,1.34) 
  

  0.067    1,580.7  

Locally adaptive (rho=0.99) 0.95 (0.38,1.34) 
  

  0.064    264.9  

Weighted sum of spatial priors 0.98 (0.09,2.03)  14,421.8   7,414.2    0.094    6,815.7  

Lung cancer, males 

BYM 1.00 (0.74,1.62)  23,680.8  12,148.9    0.131    419.4  

Leroux 1.00 (0.74,1.61)  23,686.6  12,135.1    0.122    308.1  

Geostatistical 0.98 (0.69,1.62) 22,213.4 11,218.7   0.220  98,412.3 

P-spline (tensor) 0.97 (0.71,1.57) 22,173.0 11,110.1   0.228  7,640.8 

P-spline (radial) 0.97 (0.71,2.38) 22,167.1 11,120.7   0.254 1,831.6 

SEIFA dissimilarity (binary) 1.00 (0.74,1.61)  23,681.4  12,132.1    0.121   4,617.5  

SEIFA dissimilarity (non-binary) 0.98 (0.65,2.53)  22,947.1  11,698.9    0.120   9,188.9  

Residual dissimilarity (binary) 0.98 (0.69,2.03) 22,905.4  11,608.7    0.212   8,927.4  

Residual dissimilarity (non-binary) 0.97 (0.75,1.72)  22,739.1  11,547.8    0.223   9,308.4  

Localised autocorrelation (G=3) 1.00 (0.74,1.62)  23,690.2  12,131.6    0.124    898.4  

Localised autocorrelation (G=5) 1.00 (0.74,1.61) 23,690.9  12,132.2    0.124    907.2  

Locally adaptive (rho unfixed) 1.00 (0.74,1.61) 
  

  0.148    556.0  

Locally adaptive (rho=0.99) 1.00 (0.74,1.61) 
  

  0.147    138.2  

Weighted sum of spatial priors 1.00 (0.75,1.62) 23,761.2  12,218.1    0.182   6,553.6  

Leroux scale mixture model 1.00 (0.78,1.52)  23,983.4  12,311.3    0.198   9,044.0  

All invasive cancers, females 

BYM 1.00 (0.97,1.10)  31,410.9  15,911.1    0.055    412.6  

Leroux 1.00 (0.98,1.08) 31,354.2  15,842.2    0.067    306.9  

Geostatistical 1.00 (0.91,1.12) 31,504.9 15,868.3   0.171 91,365.4 

P-spline (tensor) 1.00 (0.96,1.02) 31,409.0 15,825.6   0.108 7,634.6 

P-spline (radial) 1.00 (0.66,1.30) 31,603.0 15,964.3   0.152 1,797.1 

SEIFA dissimilarity (binary) 1.00 (0.98,1.08) 31,336.6  15,834.5    0.047   4,657.3  

SEIFA dissimilarity (non-binary) 1.00 (0.98,1.08) 31,335.4  15,835.3    0.046   8,435.4  

Residual dissimilarity (binary) 1.00 (0.90,1.43) 31,076.1  15,690.0    0.061   9,999.2  

Residual dissimilarity (non-binary) 1.00 (0.91,1.38) 31,091.7  15,732.2    0.061   8,646.0  

Localised autocorrelation (G=3) 1.00 (0.97,1.32) 31,245.1  15,938.0    0.042    768.0  

Localised autocorrelation (G=5) 1.00 (0.97,1.36) 31,191.3  15,787.7    0.047    756.1  

Locally adaptive (rho unfixed) 1.00 (0.99,1.04) 
  

  0.088    730.4  

Locally adaptive (rho=0.99) 1.00 (0.99,1.04) 
  

  0.078    201.4  

Weighted sum of spatial priors 1.00 (0.98,1.22) 31,305.4  15,890.2    0.100   6,291.5  

Leroux scale mixture model 1.00 (0.98,1.32) 31,327.3  15,854.4    0.106   9,961.5  

BYM= Besag, York and Mollié, DIC=Deviance Information Criterion, SEIFA= Socioeconomic Indexes for Areas, 

SIR=Standardised incidence ratio, WAIC= Watanabe-Akaike Information Criterion. 

Notes:  

• The lowest DIC, WAIC, Moran’s I and computation time by type of cancer are shaded purple. Any Moran’s I above 

0.2 are shaded orange, as this is considered suggestive of some spatial correlation existing in the residuals.  

• DIC and WAIC are unavailable for the locally adaptive results (which used INLA), as it was not possible to obtain 

approximate posterior samples to use in our calculations. 

• Graphical comparisons of these goodness of fit and computational time results are available in Appendix B. SIR 

maps and graphs are available in Appendices A and G. 
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Table 4: Summary of model comparison based on criteria 

Model 1 

Model specs 
(variant) Plausibility of estimates  Model Fit 

Model 
Complexity 

Estimation 
Difficulty 

Computation 
Speed 2 

Single global smoothing      
Intrinsic CAR 
(BYM) 

 
Plausible, although 
consistently over-smooths. 

Generally poor relative to other models. Very simple Easy Very fast 

Leroux 
 

Plausible, although 
consistently over-smooths. 

Slight improvement on BYM for all invasive 
cancers, otherwise about the same. 

Very simple Easy Very fast 

Geostatistical 
model 

 
Plausible but overly precise; 
tends to have more extreme 
SIR values (less smoothing) 
than BYM model, but more 
smoothing than P-spline 
model. 

Quite unpredictable - can be significantly 
better than BYM according to DIC and 
WAIC, but may also perform worse. 

Somewhat 
complex (if 
modified) 

Easy Very slow 
(requires 
simplified model 
to achieve this 
very slow 
speed) 

P-spline model Tensor Tends to have more extreme 
SIR values (less smoothing) 
than BYM model. 

As above. Complex Easy Average 

Radial Possible under-smoothing. As above. Somewhat 
complex 

Easy Fast 

Locally adaptive smoothing      

CAR 
dissimilarity 
 
 
 

SEIFA Z, binary Plausible; possible under- and 
over-smoothing. 

Slight improvement on BYM in some cases. Simple Easy Average 

SEIFA Z, non-
binary 

Plausible. About the same as the binary version of 
dissimilarity model, but improved model fit 
for lung cancer. 

Simple Easy Average 

Residuals Z, 
binary 

Plausible; possible under-
smoothing. 

Significantly better model fit than BYM in all 
cases. 

Simple Easy Average 

Residuals Z, 
non-binary 

Plausible. Significantly better model fit than BYM in all 
cases, and generally better than the all 
other versions of the dissimilarity model. 

Simple Easy Average 
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Table 4 continued: Summary of model comparison based on criteria 

Model 1 

Model specs 
(variant) Plausibility of estimates  Model Fit 

Model 
Complexity 

Estimation 
Difficulty 

Computation 
Speed 2 

Locally adaptive smoothing      

Localised 
autocorrelation 

G=3 Mostly plausible, but large 
uncertainty around estimates 
and potential oversmoothing. 

Offers potential improvement on BYM 
according to DIC, but very poor according 
to WAIC. 

Simple Easy Very fast 

G=5 As above. Same or better than G=3 version, and offers 
potentially significant improvement on BYM. 

Simple Easy Very fast 

Locally 
adaptive 

Rho determined 
in model 

Plausible, although 
consistently over-smooths 

Based on DIC (results not included in 
report), better than BYM, poorer than 
dissimilarity. 

Complex Easy, but 
difficult to 
obtain 
sample 
estimates 

Very fast 

Rho fixed at 0.99 Plausible, although 
consistently over-smooths 

As above. Complex As above. Very fast 

Weighted sum 
of spatial priors 

 
Plausible, although 
consistently over-smooths 

About the same as BYM, or potentially 
slightly better. 

Very simple Easy Average 

Leroux scale 
mixture model 

 
Plausible, although 
consistently over-smooths 

About the same as BYM. Simple Easy, but 
would not 
run for liver 
cancer 

Average 

BYM= Besag, York and Mollié, CAR= Conditional Autoregressive, DIC=Deviance Information Criterion, SEIFA= Socioeconomic Indexes for Areas, SIR=Standardised incidence ratio, WAIC= 

Watanabe-Akaike Information Criterion. 
 1 The Proper CAR mode, Hidden Potts model, spatial partition model, and skew-elliptical model are omitted since they were not run. 
2 Computation speed is based on average computation time across all three cancer groups.  <1000s = very fast, 1000s to 5000s = fast, 5000s to 10000s = average, 10000s to 15000s = 

slow, and > 15000s = very slow. 
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Plausibility of estimates 
‘Well-behaved’, reliable estimates (in terms of reasonable CIs) for every SA2 tend to result from 

models with more smoothing occurring (Appendix A). In contrast, some of the local models could 

have enormous CIs for many SA2s, resulting in little useful information. This differs from the 

geostatistical model, which seemed to produce unreasonably precise estimates. 

The binary dissimilarity model is unlikely to produce reliable estimates for each area, as it tended to 

remove too many neighbours. This was true when basing on SEIFA, true to an even greater extent 

when using residuals, and likely to hold for other formulations, such as distance-based. 

 

Model goodness of fit 
The DIC and WAIC (Table 3 and Appendix B) measures of goodness of model fit were generally in 

consensus for a given cancer type.  Some models seemed to fit the data well for certain types of 

cancer, but not others.  For example, the geostatistical and P-spline models fit the lung cancer and all 

invasive cancer data sets quite well, but result in poor to average model fit for liver cancer.  In fact, no 

model appears to fit all three cancer types consistently well.  Models which provide a noticeably better 

fit to the data across at least two of the cancer data sets include the geostatistical and P-spline 

models, and the two residual dissimilarity models. 

Moran’s I statistic (Table 3 and Appendix B) was also computed on the model residuals to determine 

the degree of spatial autocorrelation not accounted for by the models, and generally indicated that the 

residual spatial autocorrelation is quite small.  This measure can be very sensitive to the spatial 

weights matrix used to define the spatial dependencies between areas, and other spatial weights 

matrices (inverse-distance, third-order neighbours etc) were considered.  However, it is difficult to 

gauge an appropriate structure for the spatial dependencies for the purpose of calculating residual 

spatial autocorrelation, and therefore this measure is given little importance in the process of ranking 

models by their goodness of model fit. 

 

Computational time and feasibility 
Although computational time is an important consideration, given that most models have multiple 

software options, this was our least important item. We ran models in the simplest software option, 

and found that CARBayes was generally very fast, and even WinBUGS produced model estimates in 

a timely manner (Tables 3 to 4 and Appendix B). The slowest model was the geostatistical model. 

However, the feasibility of increasing model complexity – whether through the introduction of 

additional covariates or the extension of spatial data to spatio-temporal data – varies considerably 

between models.  Models which exhibit relatively long computational times and are necessarily 

complex even without these extensions, such as the P-spline model, indicate poor feasibility.  The 

mathematical structure of the geostatistical model is relatively simple, yet the long computation times 

also suggests that this model is not ideal for consideration of such model extensions. 

 

Summary and Recommendations 
We have compared 15 model variants within the Australian context of small-area cancer incidence 

mapping. See Table 5 for our initial recommendations. 

 

The BYM and Leroux models both tend to oversmooth, but provide a reasonable model fit, and are 

computationally efficient to implement.  The Leroux model may be preferred over the BYM model to 

avoid the inability of the BYM model to identify both the structured and unstructured spatial random 

effects separately.  However, some of the other models demonstrated that model fit can be improved. 

 

The geostatistical model may be able to achieve a better model fit than either the BYM or Leroux 

models.  However, this model is prohibitively slow for the type of data being analysed here, both in 

terms of the number of areas, and diversity of area sizes.  The unpredictable model fit and 

computational inefficiency do not make this model an attractive option. 

 

The P-spline model had the potential to provide a reasonable option, and a comparison by Adin et al. 

(2017) of these against moving average and CAR models found the P-spline performed well for 
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sparse disease mapping. Although a local variant is available, we found the global P-spline model had 

much more variation in modelled estimates than any of the local models considered. However, 

although it is capable of detecting areas genuinely at higher risk, Goicoa et al. (2012) found the global 

P-spline model was prone to also detecting more false high-risk areas than either the CAR or a local 

P-spline model. Many spatio-temporal spline models are available (Anderson & Ryan, 2017), but 

currently the capacity to increase the P-spline model complexity in the Australian context is unclear. In 

terms of implementation, this model is rather complex, requiring specification of a penalty matrix and 

the number of knots, which are subjective and can have a large impact on model fit.  Although 

guidelines are available for choosing the number of knots (see Wand (2000), Section 3), it is difficult 

to anticipate how these choices will impact fit.  The main concern with the P-spline model, however, 

was the specification of the basis matrix using the tensor product, which does not adequately address 

the fact that the SA2s are irregular in shape and the distances between their centroids can be vastly 

different.  The radial basis version of the P-spline model was designed to address this, but aside from 

being computationally faster, it provided similar levels of smoothing and a worse model fit.   

 

A non-binary dissimilarity model may also be an option, as this smooths more than a P-spline but less 

than BYM or Leroux. The non-binary dissimilarity formulation using the SEIFA covariate worked quite 

well, however the application would preclude any further adjustment of the spatial estimates by a 

similar measure as a covariate within the model. Since one of the objectives of the Australian Cancer 

Atlas is to provide spatial estimates adjusted for area-level socioeconomic and remoteness, the 

socioeconomic dissimilarity model will not be further considered. The residual non-binary dissimilarity 

model appears promising but does have convergence issues for some cancer types, and the most 

appropriate way to generate the initial residual matrix is unclear. Further investigation will be 

undertaken. 

 

In conclusion, the results of these analyses do not enable us to make a definitive statement about the 

best model for the Australian Cancer Atlas overall.  Instead, after removing those that would not be 

considered further due to theoretical/practical issues, the three better performing models were found 

to be: P-spline (radial), Leroux and localised autocorrelation (G=5) (Table 6).   

 

Certain models were excluded from Table 6.  The geostatistical model was excluded due to practical 

difficulties with determining appropriate threshold values, as well as prohibitively slow computational 

times.  The P-spline (tensor) model was excluded due to the assumptions about the geographical 

dependencies inferred by the tensor basis matrix.  The SEIFA dissimilarity models were excluded on 

the grounds that it is preferential that SEIFA be included in the model as a covariate, rather than a 

variable for defining the dissimilarity metric.  The locally adaptive models were excluded since they 

are difficult to evaluate using criteria such as model fit, plausibility of estimates, and over- and under-

smoothing given the posterior estimates are obtained using INLA, and the standard INLA commands 

to obtain samples are not available due to it being called from within the CARBayes package.  

Additionally, the Leroux scale mixture model was excluded for the liver cancer in males because it 

was unable to run.  

 

The goals of the Australian Cancer Atlas require a delicate balance between conservative, 

appropriately smoothed estimates, but ones with sufficient spatial variation between those estimates 

to enable the impact of suitable ecological covariates to be assessed.  This report has demonstrated 

the dramatic influence that different models can have on very rare diseases, such as those for liver 

cancer among males. Given the different performances of models on different cancer types, we have 

proposed a preferred model given specific data characteristics from our top models (Table 6). The 

data characteristics considered were counts (low/moderate/high) and the presence of a trend across 

SEIFA quintiles (weak/strong), likely to represent evidence that neighbouring areas of different 

socioeconomic estimates could have genuine disparities in cancer influences and estimates. The 

criteria used to rank models were based on a modified form of our original criteria, emphasising the 

importance of convergence, plausible estimates and model fit. The preferred model for those with 

low/moderate counts and a strong SEIFA trend was the P-spline radial model, while the preferred 

model for high counts and weak SEIFA trend was the localised autocorrelation (G=5) model, closely 

followed by Leroux. When conducting spatial modelling, it is vital to consider data and area 

characteristics to ensure an appropriate model is used. 
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Table 5: Model comparison and recommendations 

Model 1 

Model specs 
(variant) Strengths Limitations Verdict 

Single global smoothing    
Intrinsic CAR 
(BYM) 

 
Straightforward, easy 
to implement, fast. 

Tendency to oversmooth estimates. Non-identifiability of both random effects. Consider further 
application. 

Leroux 
 

Straightforward, easy 
to implement, fast. 

Tendency to oversmooth estimates. Consider further 
application. 

Geostatistical 
model 

 
Simple model (unless 
modified), easy to 
implement. 

A mixture model may be necessary for some parameters to improve model fit if 
areas are vastly different sizes.  Model fit can vary between datasets 
dramatically.  Computationally very slow, even after major simplification of the 
model. Does not scale well with number of areas. 

Not recommended. 

P-spline model Tensor basis Can provide a 
reasonable model fit 
due to flexibility of 
splines. 

Rather complex model which can be quite difficult to understand and 
implement.  Specification of certain parameters such as number of knots is 
subjective.  Computational speed not particularly fast, and extensions to 
spatio-temporal data could make this prohibitively slow. 

Not recommended. 

 Radial basis Fast Rather complex model which can be quite difficult to understand and 
implement.  Specification of certain parameters such as location and number of 
knots is subjective.  Extensions to spatio-temporal data could reduce the fast 
computation substantially. 

Consider further 
application. 

Locally adaptive smoothing    

CAR 
dissimilarity 
 
 
 

SEIFA Z, binary Simple model, easy to 
implement. 

Requires appropriate covariate information. May isolate areas to the extent that 
resulting estimates are very uncertain, or unable to converge. Not viable to use 
the same covariates in the model as are used in the dissimilarity matrix. 

Not recommended. 

SEIFA Z, non-
binary 

Simple model, easy to 
implement. 

Requires appropriate covariate information. Consider further 
application only if 
no interest in 
adjusting for SEIFA 
in the model. 

Residuals Z, 
binary 

Simple model, easy to 
implement; good 
model fit. 

Prone to isolating areas, may have convergence difficulties. This is an 
introduced (and untested) model variant. 

Not recommended. 

Residuals Z, 
non-binary 

Simple model, easy to 
implement; superior 
model fit. 

Moran’s I on residuals suggested some spatial autocorrelation for lung cancer. 
This is an introduced (and untested) model variant. 

Consider further 
application. 
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Table 5 continued: Model comparison and recommendations 

Model 1 

Model specs 
(variant) Strengths Limitations Verdict 

Locally adaptive smoothing    

Localised 
autocorrelation 

G=3 Simple model, easy to 
implement. 

Uncertainty of parameter estimates can be very large, which can adversely 
affect model fit. 

Not recommended. 

G=5 Simple model, easy to 
implement. 

Uncertainty of parameter estimates can be very large, which can adversely 
affect model fit. 

Consider further 
application. 

Locally 
adaptive 

Rho determined 
in model 

Fully automatic. Lacks the flexibility of post-estimation analyses available with MCMC chains. 
Tendency to oversmooth estimates. Not fully Bayesian estimation of W 
elements. 

Not recommended. 

Rho fixed at 0.99 Very fast. Lacks the flexibility of post-estimation analyses available with MCMC chains. 
Tendency to oversmooth estimates. Not fully Bayesian estimation of W 
elements. 

Not recommended. 

Weighted sum 
of spatial priors 

 
Simple model. Tendency for model to oversmooth estimates. Not recommended. 

Leroux scale 
mixture model 

 
Allows for non-
normality. 

Tendency for model to oversmooth estimates. Only recently introduced. 
Not recommended. 

BYM= Besag, York and Mollié, CAR=Conditional autoregressive, SEIFA= Socioeconomic Indexes for Areas. 

1 The Proper CAR model, Hidden Potts model, spatial partition model, local spline model and skew-elliptical model are omitted since they were not run. 

 

Table 6: Ranking of selected models 

Model 1 WAIC 2 
Computation 
Time 3 

Under- 
Smoothing 4 

Over- 
Smoothing 5 CI Plausibility 6 Convergence 7 Consensus 8 

Liver cancer, males. Data characteristics are low counts, strong SEIFA quintile gradient. 

Intrinsic CAR (BYM) 11 1 1 11 0 1 25 

Leroux 11 1 1 11 0 1 25 

P-spline (radial) 11 4 3 1 1 0 20 

CAR dissimilarity (residuals Z, binary) 3 20 6 5 1 17 52 

CAR dissimilarity (residuals Z, non-binary) 1 20 5 4 1 2 33 

Localised autocorrelation (G=3) 20 2 1 8 2 17 50 

Localised autocorrelation (G=5) 11 2 1 9 2 1 26 

Weighted sum of spatial priors 11 16 2 10 1 1 41 
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Table 6 Continued: Ranking of selected models 

Model 1 WAIC 2 
Computation 
Time 3 

Under- 
Smoothing 4 

Over- 
Smoothing 5 CI Plausibility 6 Convergence 7 Consensus 8 

Lung cancer, males. Data characteristics are moderate counts, strong SEIFA quintile gradient. 

Intrinsic CAR (BYM) 18 1 2 7 0 1 29 

Leroux 18 1 2 10 0 1 32 

P-spline (radial) 1 4 9 3 1 0 18 

CAR dissimilarity (residuals Z, binary) 9 20 7 5 0 16 57 

CAR dissimilarity (residuals Z, non-binary) 8 20 5 4 0 1 38 

Localised autocorrelation (G=3) 18 2 2 9 0 1 32 

Localised autocorrelation (G=5) 18 2 2 8 0 1 31 

Weighted sum of spatial priors 19 14 3 12 0 1 49 

Leroux scale mixture model 20 20 1 13 0 0 54 

All invasive cancers, females. Data characteristics are high counts, weak SEIFA quintile gradient. 

Intrinsic CAR (BYM) 17 1 4 5 0 1 28 

Leroux 12 1 2 6 0 1 22 

P-spline (radial) 20 4 7 2 0 0 33 

CAR dissimilarity (residuals Z, binary) 1 20 6 4 0 1 32 

CAR dissimilarity (residuals Z, non-binary) 4 18 5 3 0 1 31 

Localised autocorrelation (G=3) 19 2 4 6 0 3 34 

Localised autocorrelation (G=5) 8 2 4 6 0 1 21 

Weighted sum of spatial priors 15 13 4 7 0 1 40 

Leroux scale mixture model 12 20 3 7 0 0 42 

BYM= Besag, York and Mollié, CAR=Conditional autoregressive. 

1 The Proper CAR model, Hidden Potts model, spatial partition model, local spline model and skew-elliptical model are omitted since they were not run.  The Geostatistical model, P-spline 

(tensor) model, both SEIFA dissimilarity models, both locally adaptive models, and in the case of liver cancer, the Leroux scale mixture model, were excluded on theoretical/practical 

grounds. 
2 Rank based on ventiles (20-quantiles) of WAIC. 
3 Rank based on ventiles (20-quantiles) of computation time in seconds, excluding the time for the Geostatistical model. 
4 Rank based on the number of posterior SIRs > 98th percentile of raw SIRs plus number of zero posterior SIRs (since 2nd percentile is zero for all cancers).  Smallest rank corresponds to 

smallest number. 
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5 Rank based on the number of posterior SIRs > 80th percentile of raw SIRs plus number of posterior SIRs < 20th percentile of raw SIRs.  Smallest rank corresponds to largest number. 
6 Ranks: 0 = reasonable; 1 = ok, but some areas are too wide/precise; 2 = bad (either too precise/wide. 
7 Ranks: 0 = ok (<1% <0.01); 1 = poor (1-<10% <0.01); 2 - 20 = bad: 10%+ <0.01 (Geweke % divided by 5 and rounded) 
8 The three best models by type of cancer based on the consensus rank are shaded purple. 
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Appendix A: Graphs of model results 
Note: Axes are consistent by cancer type. 

 

Liver cancer, males, modelled SIR 
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Lung cancer, males, modelled SIR 
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All invasive cancers, females, modelled SIR 
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Appendix B: Graphs of model fit and computation time 
 

Deviance Information Criterion (DIC) 
 

Note: smaller values of DIC indicate better model fit. 
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Watanabe-Akaike Information Criterion (WAIC) 
 

Note: smaller values of WAIC indicate better model fit. 
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Moran’s I statistic for the model residuals 
 

Note: for the sake of comparability, the typical binary, first-order adjacency spatial weights matrix was used for all 

models. The closer Moran’s I is to zero, the better the model fit. A horizontal line is shown at 0.2 as values above 

this may be indicative of spatial autocorrelation present in the residuals. 
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Computational time 
 

Note: the computational time for the Geostatistical model greatly exceeds the time for any other model, even after 

modifying the model by imposing a MRF on the spatial structure.  To facilitate comparisons between models with 

small computation time, the y-axis has been capped at 10000s while the computation time for the Geostatistical 

model, to the nearest second, is shown in the figure. 
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Appendix C: Convergence by model type 
 

Geweke convergence diagnostic p-values on the SIR for each area out of a total of 2153 areas. Below 0.01 is unlikely 

to have converged, 0.01 to <0.05 may be worth examining plots. For further details on the Geweke convergence 

diagnostic, refer to Appendix F. 

 <0.01 0.01-<0.05 0.05+ 

Model N (%) N (%) N (%) 

Liver cancer, males 
     

BYM 93 4.3% 114 5.3% 1,946 90.4% 

Leroux 100 4.6% 159 7.4% 1,894 88.0% 

Geostatistical 3 0.1% 22 1.0% 2,128 98.8% 

P-spline (tensor) 0 0.0% 78 3.6% 2,075 96.4% 
P-spline (radial) 4 0.2% 32 1.5% 2,117 98.3% 
SEIFA dissimilarity 
(binary weighting) 

55 2.6% 187 8.7% 1,911 88.8% 

SEIFA dissimilarity 
(non-binary 
weighting) 

50 2.3% 123 5.7% 1,980 92.0% 

Residual dissimilarity 
(binary weighting) 

1,785 82.9% 96 4.5% 272 12.6% 

Residual dissimilarity 
(non-binary 
weighting) 

249 11.6% 179 8.3% 1,725 80.1% 

Localised 
autocorrelation (G=3) 

1,858 86.3% 72 3.3% 223 10.4% 

Localised 
autocorrelation (G=5) 

151 7.0% 168 7.8% 1,834 85.2% 

Weighted sum of 
spatial priors 

64 3.0% 141 6.5% 1,948 90.5% 

Lung cancer, males 
     

BYM 25 1.2% 120 5.6% 2,008 93.3% 

Leroux 33 1.5% 97 4.5% 2,023 94.0% 

Geostatistical 14 0.7% 62 2.9% 2,077 96.5% 

P-spline (tensor) 0 0.0% 116 5.4% 2,037 94.6% 
P-spline (radial) 0 0.0% 9 0.4% 2,144 99.6% 
SEIFA dissimilarity 
(binary weighting) 

26 1.2% 100 4.6% 2,027 94.1% 

SEIFA dissimilarity 
(non-binary 
weighting) 

51 2.4% 106 4.9% 1,996 92.7% 

Residual dissimilarity 
(binary weighting) 

1,012 47.0% 210 9.8% 931 43.2% 

Residual dissimilarity 
(non-binary 
weighting) 

74 3.4% 135 6.3% 1,944 90.3% 

Localised 
autocorrelation (G=3) 

27 1.3% 101 4.7% 2,025 94.1% 

Localised 
autocorrelation (G=5) 

40 1.9% 104 4.8% 2,009 93.3% 

Weighted sum of 
spatial priors 

28 1.3% 104 4.8% 2,021 93.9% 

Leroux scale mixture 
model 

19 0.9% 88 4.1% 2,046 95.0% 

All invasive cancers, females 
    

BYM 97 4.5% 159 7.4% 1,897 88.1% 

Leroux 56 2.6% 132 6.1% 1,965 91.3% 

Geostatistical 19 0.9% 149 6.9% 1,985 92.2% 

P-spline (tensor) 40 1.9% 118 5.5% 1,995 92.7% 

P-spline (radial) 0 0.0% 101 4.7% 2,052 95.3% 

SEIFA dissimilarity 
(binary weighting) 

97 4.5% 115 5.3% 1,941 90.2% 
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 <0.01 0.01-<0.05 0.05+ 

Model N (%) N (%) N (%) 

SEIFA dissimilarity 
(non-binary 
weighting) 

76 3.5% 127 5.9% 1,950 90.6% 

Residual dissimilarity 
(binary weighting) 

72 3.3% 191 8.9% 1,890 87.8% 

Residual dissimilarity 
(non-binary 
weighting) 

109 5.1% 162 7.5% 1,882 87.4% 

Localised 
autocorrelation (G=3) 

355 16.5% 218 10.1% 1,580 73.4% 

Localised 
autocorrelation (G=5) 

60 2.8% 136 6.3% 1,957 90.9% 

Weighted sum of 
spatial priors 

101 4.7% 190 8.8% 1,862 86.5% 

Leroux scale mixture 
model 

18 0.8% 95 4.4% 2,040 94.8% 

 

Note: As the Poisson localised models were run in INLA, convergence is not applicable. 
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Appendix D: Changes to W for localised models 
 

Standardised Number of Neighbours 
Note: the values represent the sum of the weights in each row of the spatial weights matrix after standardising this 

matrix such that the maximum weight in each row is 1.  This provides a more comparable and representative 

perspective of the neighbourhood structure used in each model. 
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Appendix E: Code for implementing selected models 
 

The following code is supplied to: 

1. Enable replication 

2. Provide additional details on the models used, including the hyperprior specifications. 

 

 

CARBayes R package, version 4.7 
 

The default prior and hyperprior specifications were used for each of these models. This is inverse-

gamma(1,0.01) for the variance of the spatial components. 

 

BYM model 
 

R code: 

formula <-obs~offset(log(expect)) 

model.bym<-S.CARbym(formula=formula, data=file.input, family="poisson", W=W, 

                                        burnin=50000, 

                                        n.sample=150000, thin=10) 

 

Leroux model 
 

R code: 

formula <-obs~offset(log(expect)) 

model.ler<-S.CARleroux(formula=formula, data=file.input, family="poisson", W=W, 

                                        burnin=50000, 

                                        n.sample=150000, thin=10) 

 

SEIFA dissimilarity model (binary and non-binary) 
The Z matrix was based on the socioeconomic index of relative disadvantage (IRSD) as a continuous 

score. See Appendix F for further details. For the non-binary version, W.binary is replaced with 

“FALSE” in the model call. 

R code: 

  Z.irsd <- as.matrix(dist(cbind(irsd, irsd), method="maximum", diag=TRUE, 

                           upper=TRUE)) 

   

  formula <-obs~offset(log(expect)) 

  model.diss<-S.CARdissimilarity(formula=formula, data=file.input, family="poisson", W=W, 

                                 Z=list(Z.irsd=Z.irsd), W.binary=TRUE, burnin=50000, 

                                 n.sample=150000, thin=10) 
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Residual dissimilarity model (binary and non-binary) 
The Z matrix was based on the residuals output from the Leroux model as a continuous number. See 

Appendix F for further details. 

 

R code: 

Z.test <- as.matrix(dist(cbind(test, test), method="maximum", diag=TRUE, 

                           upper=TRUE)) 

   

  formula <-obs~offset(log(expect)) 

  model.diss<-S.CARdissimilarity(formula=formula, data=file.input, family="poisson", W=W, 

                                          Z=list(Z.test=Z.test), W.binary=TRUE, burnin=50000, 

                                          n.sample=150000, thin=10) 

   

 

Localised autocorrelation (G=3 and G=5) 
For G=5, the G=3 is replaced with G=5 in the model call. 

 

R code: 

formula <-obs~offset(log(expect)) 

  model.local<-S.CARlocalised(formula=formula, data=file.input, family="poisson", G=3, W=W, 

                              burnin=50000, 

                              n.sample=150000, thin=10) 

 

 

 

INLA 
 

Locally adaptive 
 

Note that the poisson.localisedINLA.R function is available from Duncan Lee on request. We made 

minor tweaks to this in the version run, including outputting the final W matrices. 

 

R code: 

# Rho is not fixed at a specific value 

formula <-file.input$obs~offset(log(file.input$expect)) 

 

source("<filepath>/poisson.localisedINLA_.R") 

 

model.ploc<-poisson.localisedINLA(formula=formula, W=W, fix.rho=FALSE) 

 

#Rho is fixed at 0.99 

model.ploc2<-poisson.localisedINLA(formula=formula, W=W, fix.rho=TRUE, rho=0.99) 

 

WinBUGS version 1.4.3 
 

Weighted sum of spatial priors 
Based on code available on p. 134 (Lawson et al., 2004). 

 

WinBUGS code: 

model { 

 

for (i in 1:N) { 
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 #Poisson likelihood for observed counts 

  O[i]~dpois(mu[i]) 

 

  log(mu[i])<-log(E[i])+alpha+v[i]+p[i]*u[i]+(1-p[i])*fi[i] 

 

 #Prior distribution of the uncorrelated heterogeneity 

 v[i] ~ dnorm (0,tauv)  

 

 #Prior distribution of the p[i] 

 p[i]~dbeta(1,1) #Note that the original model had 0.5 as the parameters, but this was too 

diffuse for WinBUGS, giving the error message "Cannot bracket slice for node p.."  

 } 

 

# CAR prior distribution for spatial correlated heterogeneity  

u[1 : N] ~ car.normal(adj[], weights[], num[], tauu) 

 

# CAR prior distribution for spatial correlated heterogeneity  

fi[1 : N] ~ car.l1(adj[], weights[], num[], taufi) 

 

for(k in 1:sumNumNeigh) { 

weights[k] <- 1 

} 

 

# Improper prior distribution for the mean RR in the study region 

alpha ~ dflat() 

mean<-exp(alpha) 

 

#Hyperprior distributions on inverse variance parameter of random effects 

tauu ~ dgamma(0.5, 0.0005) 

tauv ~ dgamma(0.5, 0.0005) 

taufi ~ dgamma(0.5, 0.0005) 

} 

 

 

Leroux scale mixture model 
The following is a modified version of code obtained from Peter Congdon on request. 
 
WinBUGS code: 
model { 
 
for (i in 1:N) { 
  O[i]~dpois(mu[i]) 
 
  log(mu[i])<-log(E[i])+alpha+r[i] 
       
  r[i] ~dnorm(R[i],taur[i])   
      taur[i] <- tau * kap[i] * (1-lam+lam*num[i])     
      R[i] <- (lam/(1-lam+lam*num[i]))*sum(rneigh[cum[i]+1:cum[i+1]]) 
  kap[i]~dgamma(nu2, nu2) 
  }  
 
 #  error vector over neighbours     
      for (k in 1:sumNumNeigh) { 
  rneigh[k] <- r[adj[k]]*kap[adj[k]] 
  }   
 
 #Other priors   
 nu~dexp(2.5) #Note the original dexp(0.1) caused the error message: cannot bracket slice for 
node nu. And nu was set at 10 in a simulation study in Congdon's paper.  
 nu2<-nu/2 
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       tau ~dgamma(1,0.01) 
 lam ~dunif(0,1) 
 alpha ~ dnorm (0,1.0E-5)          
}    
 

Skew-elliptical areal spatial model 
This code is based on that in the Appendix of Nathoo and Ghosh (2013). Note that this model would 
hang on the compile step in WinBUGS, so could not be run. It is possible a simplified version (non-
DP) might work, but Farouk Nathoo was unable to supply the code for this version, and we were 
unable to modify the code within the necessary timeframes. 
 
model { 
 
for (i in 1:N) { 
  O[i]~dpois(mu[i]) 
  log(mu[i])<-log(E[i])+alpha+b[i]-bmean 
 } 
  bmean<-mean(b[]) 
 
#Define skew-elliptical spatial random effects 
for (i in 1:N) { 
  b[i]<-(X[i]/sqrt(eta[i])) 
  thetaX[i]<-deltaskew*abs(Z[i]) 
  m[i]<-1/num[i] 
  #mixing variables based on semiparametric DP model 
  Z[i]~dnorm(0,1) 
  eta[i]<-wgeta[zg[i]] 
  zg[i]~dcat(pi1[1:maxclus]) 
 
 for (j in 1:maxclus) { 
  Memb1[i,j]<-equals(zg[i],j) 
  } 
 } 
 
for(k in 1:sumNumNeigh){ 
 for(i in 1:N){ 
  pick[k,i]<-step(k-cum[i]-epsilon)*step(cum[i+1]-k) 
  } 
 C[k]<-1/inprod(num[], pick[k,]) #weight for each pair of neighbours 
 } 
epsilon<-0.0001 
 
#no of nonempty clusters in DP 
for (j in 1:maxclus) { 
  TMemb1[j]<-sum(Memb1[,j]) 
  FMemb1[j]<-step(TMemb1[j]-1) 
 } 
 
  K1<-sum(FMemb1[]) 
 
#Base distribution for DP 
for (j in 1:maxclus) { 
  r1[j]~dbeta(1,alpha11) 
  wgeta[j]~gen.gamma(df,df,1) 
 } 
 
#Stick-breaking for DP 
pi1[1]<-r1[1] 
for (j in 2:(maxclus-1)) {  
 log(pi1[j])<-log(r1[j])+sum(R1[j,1:j-1]) 
 for (l in 1:j-1) { 
  R1[j,l]<-log(1-r1[l]) 
  } 
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 } 
 
#Ishwaran truncation approximating full DP 
pi1[maxclus]<-1-sum(pi1[1:(maxclus-1)]) 
 
#Priors 
#Hyperprarameter for DP 
alpha11~dunif(0.5,4) 
#Spatial smoothing 
X[1:N]~car.proper(thetaX[], C[], adj[], num[], m[], taux, kappa) 
#Spatial variability 
taux~dgamma(0.5,0.0005) 
#Skew parameter 
deltaskew~dnorm(0,0.01) 
#Spatial smoothing parameter in CAR model 
kappa~dbeta(18,2)I(,0.99) 
#Degrees of freedom in skew-t distribution 
df<-nu/2 
nu~dexp(lambdanu)I(2,) 
lambdanu<-0.1 
#Regression coefficient 
alpha~dnorm(0,0.001) 
} 
 

JAGS using R2jags R package, version 0.5-7 
 

Geostatistical Model 
 

JAGS code: 

model{ 
  for(i in 1:N){ 
    y[i] ~ dpois(E.RR[i]) 
    E.RR[i] = E[i] * exp(mu[i]) 
    mu[i] = alpha + R[i] + beta * x[i] 
    R[i] ~ dnorm(S[i], tau) 
    S[i] = sum(S.all[i,]) / N.i[i]     # Mean of non-zero values in each row 
    for(j in 1:max(N.i)){ 
      S.all[i,j] = exp(-pow((lambda * d[i,j]), k[z[i]])) 
    } 
  } 
  alpha ~ dnorm(0, 0.01) 
  beta ~ dnorm(0, 0.01) 
  lambda ~ dunif(0.001, 2) 
  for(r in 1:R){ 
    k[r] ~ dunif(0.1, 20) 
  } 
} 
 
 

P-spline Model (Global; tensor and radial) 
 

JAGS code: 

model{ 
  for (i in 1:N){ 
    y[i] ~ dpois(E.RR[i]) 
    E.RR[i] <- E[i] * exp(mu[i]) 
    mu[i] = alpha + S[i] + beta * x[i] 
    S[i] = B[i, ] %*% theta[1:K] 
  } 
  alpha ~ dnorm(0, 0.01) 
  beta ~ dnorm(0, 0.01) 
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  theta[1:K] ~ dmnorm(phi * ones, lambda * Q[1:K,1:K]) 
   
  phi ~ dnorm(0, 1e-6) 
  lambda ~ dgamma(0.001, 0.001) 
} 
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Appendix F: Model methods 
 

Data simulation 
 

Queensland cancer incidence data during 2005-2014 were summed together by cancer type (all, 

prostate, lung, kidney, cervical, liver), 5-year age group (to 85+ years), sex (males, females), the 

ABS’s five remoteness areas (RAs, ranging from Major city to Very remote) (Australian Bureau of 

Statistics, 2013a) and (Australian) Socioeconomic Indexes for Areas (SEIFA) Index of Relative 

Socioeconomic Disadvantage (IRSD) quintiles (Australian Bureau of Statistics, 2013b). The 

corresponding population data were applied to obtain age-specific rates. These rates were then 

applied to each SA2 throughout Australia based on the SA2’s remoteness and SEIFA classifications. 

When a SEIFA-RA combination existed in another state that was not in Queensland, the rate for the 

middle SEIFA quintile and the same RA was applied. Further, for all areas with a missing SEIFA value 

(even if the remoteness-SEIFA combination existed in Queensland), the rate for the middle SEIFA 

quintile and the corresponding RA was applied. 

 

Rates were then multiplied by the population (by sex and age group) in each SA2 to generate counts. 

Within each state (including Queensland), counts were randomly adjusted by up to +/- 10%, and 

rounded to give integers. 

 

Checks against ACIM suggested total Australian estimates (and allowing for different years) were 

reasonable, although cervical and especially liver cancers were rather low after rounding. 

 

Expected counts 
 
As internal standardisation was used, the Australian age-sex specific rate was multiplied by the SA2 

age-sex specific population. These were then summed together to obtain the expected number of 

cases in each SA2 by sex. 

 

Geographical areas 
 

Lord Howe Island lies 600km off the coast of NSW, and was removed as considered too far away 

from the coastline to be influenced or exert influence. All SA2s with a zero or very low estimated 

resident population during 2005-2014 were also removed. These were often lakes, reservoirs, 

airports, military, industrial or national parks. 

 

Dissimilarity model Z matrices 

SEIFA IRSD 
 

The SEIFA IRSD Score (Australian Bureau of Statistics, 2013b) for each SA2 was used. This is a 

continuous value that, across all of Australia, ranged from 440.67 to 1147.96. 

 

Residuals 
 

After calculating the Leroux CAR model, the residuals output from the CARBayes package (which are 

calculated as the observed values minus the fitted values) for each SA2 were used. For liver cancer 

these ranged from -3.23 to 6.71, lung had a range of -14.72 to 18.55 and all invasive of -54.38 to 

115.36. 
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DIC, WAIC, Moran’s I on residuals 
 

These were generated using an author-written R-program. There are several variants of DIC, and the 

definition used was based on that in Celeux et al. (2006), specifically: 

 

−4𝔼𝜃[log 𝑓(𝑦|𝜃)|𝑦] + 2 log 𝑓(𝑦|𝔼𝜃[𝜃|𝑦]) 

 

where 𝑓(𝑦|𝜃) is the likelihood, and the posterior mean is represented as: 𝔼𝜃[𝜃|𝑦]. 

 

WAIC was defined as follows (Gelman et al., 2014): 

 

−2 × (∑ log ∫ 𝑝(𝑦𝑖|𝜃) 𝑝post(𝜃) 𝑑𝜃 −

𝑁

𝑖=1

∑ varpost(log 𝑝(𝑦𝑖|𝜃))

𝑁

𝑖=1

) 

 

where the predictive density is 𝑝(𝑦𝑖|𝜃) and the posterior distribution is 𝑝post(𝜃) = 𝑝(𝑦𝑖|𝜃) and varpost 

refers to the posterior variance. 

 

The DIC equation gave substantially higher estimates than obtained under default software options 

(CARBayes, JAGS or INLA). Nonetheless, as the exact formulation of this can differ, it was preferred 

to use these results to ensure consistency of calculation between models. In contrast, WAIC and 

Moran’s I estimates were very similar to those obtained under default software options. For the 

Poisson localised models (run in INLA), the Moran’s I reported is the default output from the software. 

All Moran’s I estimates are based on the default first-order Queen neighbourhood adjacency matrix. 

 

Geweke convergence diagnostic 
 

Some trace and autocorrelation plots were examined to check convergence, but given the high 

numbers of areas, and the use of single chains, the Geweke convergence diagnostic (Geweke, 1992) 

was calculated on the SIR for all included SA2s. This was calculated using the “wbgeweke” command 

in Stata v15.0, which compares the first 10% of iterations against the final 50%. 
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Appendix G: Maps of model results 
 

Liver cancer, males, modelled SIR 
Raw (observed/expected)  BYM 

  
Leroux Geostatistical 
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P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting) SEIFA dissimilarity (non-binary weighting) 
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Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3) Localised autocorrelation (G=5) 

  



48 
 

Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

  
Weighted sum of spatial priors Leroux scale mixture model 

 

 

 

 

 

 

 

Model would not run for liver cancer, males 
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Liver cancer, males, posterior probability (PP) SIR >1 

Maps are aligned to correspond with the layout of the modelled SIR maps. 

 BYM 

 

 
Leroux Geostatistical 
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P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting) SEIFA dissimilarity (non-binary weighting) 
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Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3)  Localised autocorrelation (G=5) 

  
Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

[Unavailable] [Unavailable] 
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Weighted sum of spatial priors Leroux scale mixture model 

 

 

 

 

 

 

 

Model would not run for liver cancer, males 
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Lung cancer, males, modelled SIR 
Raw (observed/expected) white=0 cases BYM 

  

Leroux Geostatistical 
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P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting) SEIFA dissimilarity (non-binary weighting) 
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Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3) Localised autocorrelation (G=5) 
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Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

  
Weighted sum of spatial priors Leroux scale mixture model 
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Lung cancer, males, PP SIR >1 

Maps are aligned to correspond with the layout of the modelled SIR maps. 

 BYM 

 

 
Leroux Geostatistical 

  



58 
 

P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting)  SEIFA dissimilarity (non-binary weighting) 

  



59 
 

Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3) Localised autocorrelation (G=5) 

  
Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

[Unavailable] [Unavailable] 
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Weighted sum of spatial priors Leroux scale mixture model 
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All invasive cancers, females, modelled SIR 
Raw (observed/expected) white=0 cases BYM 

  
Leroux Geostatistical 
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P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting) SEIFA dissimilarity (non-binary weighting) 

  



63 
 

Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3) Localised autocorrelation (G=5) 
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Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

  
Weighted sum of spatial priors Leroux scale mixture model 
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All invasive cancers, females, PP SIR >1 

Maps are aligned to correspond with the layout of the modelled SIR maps. 

 BYM 

 

 
Leroux Geostatistical 
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P-spline (tensor) P-spline (radial) 

  
SEIFA dissimilarity (binary weighting) SEIFA dissimilarity (non-binary weighting) 

  



67 
 

Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

  
Localised autocorrelation (G=3) Localised autocorrelation (G=5) 

  
Locally adaptive (rho is determined when modelling) Locally adaptive (rho is fixed at 0.99) 

[Unavailable] [Unavailable] 
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Weighted sum of spatial priors Leroux scale mixture model 
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Appendix H: Maps of model fit 
 

Liver cancer, males, residuals 
BYM  

  
Leroux  
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Geostatistical  

  
P-spline (tensor)  

  



71 
 

P-spline (radial)  

  
SEIFA dissimilarity (binary weighting)  
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SEIFA dissimilarity (non-binary weighting)  

  
Residual dissimilarity (binary weighting)  
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Residual dissimilarity (non-binary weighting)  

  
Localised autocorrelation (G=3)  
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Localised autocorrelation (G=5)  

  
Locally adaptive (rho is determined when modelling)  
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Locally adaptive (rho is fixed at 0.99)  

  
Weighted sum of spatial priors  

  
Leroux scale mixture model      Would not run for liver cancer, males 

 

Note:  The legend range was-6.0 to 6.7, and designed to enable differences between models to be visible. Areas shaded grey are outside this range. 
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Liver cancer, males, RMSPE 
 

BYM Leroux Geostatistical 

   
P-spline (tensor) P-spline (radial) SEIFA dissimilarity (binary weighting) 

   



77 
 

SEIFA dissimilarity (non-binary weighting) Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

   
Localised autocorrelation (G=3) Localised autocorrelation (G=5) Locally adaptive (rho is determined when modelling) 

  

[Unavailable from INLA output] 
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Locally adaptive (rho is fixed at 0.99) Weighted sum of spatial priors Leroux scale mixture model 

[Unavailable from INLA output] 

 

 

 

 

 

 

 

Model would not run for liver cancer, males 

Note:  The maximum legend value was set to 8. Areas shaded grey are higher than this value. 
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Lung cancer, males, residuals 

BYM  

  
Leroux  
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Geostatistical  

  
P-spline (tensor)  

  



81 
 

P-spline (radial)  

  
SEIFA dissimilarity (binary weighting)  
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SEIFA dissimilarity (non-binary weighting)  

  
Residual dissimilarity (binary weighting)  
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Residual dissimilarity (non-binary weighting)  

  
Localised autocorrelation (G=3)  
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Localised autocorrelation (G=5)  

  
Locally adaptive (rho is determined when modelling)  
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Locally adaptive (rho is fixed at 0.99)  

  
Weighted sum of spatial priors  
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Leroux scale mixture model  

  
Note:  The legend range was-15.1 to 18.7, and designed to enable differences between models to be visible. Areas shaded grey are outside this range. 
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Lung cancer, males, RMSPE 
 

BYM Leroux Geostatistical 

   
P-spline (tensor) P-spline (radial) SEIFA dissimilarity (binary weighting) 

   



88 
 

SEIFA dissimilarity (non-binary weighting) Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

   
Localised autocorrelation (G=3) Localised autocorrelation (G=5) Locally adaptive (rho is determined when modelling) 

  

[Unavailable from INLA output] 
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Locally adaptive (rho is fixed at 0.99) Weighted sum of spatial priors Leroux scale mixture model 

[Unavailable from INLA output] 

  
Note:  The maximum legend value was set to 25. Areas shaded grey are higher than this value. 
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All invasive cancers, females, residuals 

BYM  

  
Leroux  
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Geostatistical  

  
P-spline (tensor)  

  



92 
 

P-spline (radial)  

  
SEIFA dissimilarity (binary weighting)  
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SEIFA dissimilarity (non-binary weighting)  

  
Residual dissimilarity (binary weighting)  
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Residual dissimilarity (non-binary weighting)  

  
Localised autocorrelation (G=3)  
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Localised autocorrelation (G=5)  

  
Locally adaptive (rho is determined when modelling)  
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Locally adaptive (rho is fixed at 0.99)  

  
Weighted sum of spatial priors  
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Leroux scale mixture model  

  
Note:  The legend range was-44.8 to 80, and designed to enable differences between models to be visible. Areas shaded grey are outside this range.  
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All invasive cancers, females, RMSPE 
BYM Leroux Geostatistical 

   
P-spline (tensor) P-spline (radial) SEIFA dissimilarity (binary weighting) 

   



99 
 

SEIFA dissimilarity (non-binary weighting) Residual dissimilarity (binary weighting) Residual dissimilarity (non-binary weighting) 

   
Localised autocorrelation (G=3) Localised autocorrelation (G=5) Locally adaptive (rho is determined when modelling) 

  

[Unavailable from INLA output] 
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Locally adaptive (rho is fixed at 0.99) Weighted sum of spatial priors Leroux scale mixture model 

[Unavailable from INLA output] 

  
Note:  The maximum legend value was set to 64. Areas shaded grey are higher than this value. 




